]> git.ozlabs.org Git - ppp.git/blobdiff - pppd/optimize.c
bpf filter stuff taken out
[ppp.git] / pppd / optimize.c
diff --git a/pppd/optimize.c b/pppd/optimize.c
deleted file mode 100644 (file)
index cb11949..0000000
+++ /dev/null
@@ -1,1929 +0,0 @@
-/*     From NetBSD: optimize.c,v 1.3 1995/04/29 05:42:28 cgd Exp */
-
-/*
- * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994
- *     The Regents of the University of California.  All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that: (1) source code distributions
- * retain the above copyright notice and this paragraph in its entirety, (2)
- * distributions including binary code include the above copyright notice and
- * this paragraph in its entirety in the documentation or other materials
- * provided with the distribution, and (3) all advertising materials mentioning
- * features or use of this software display the following acknowledgement:
- * ``This product includes software developed by the University of California,
- * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
- * the University nor the names of its contributors may be used to endorse
- * or promote products derived from this software without specific prior
- * written permission.
- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
- * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
- *
- *  Optimization module for tcpdump intermediate representation.
- */
-#ifndef lint
-static char rcsid[] =
-    "@(#) Header: optimize.c,v 1.45 94/06/20 19:07:55 leres Exp (LBL)";
-#endif
-
-#include <sys/types.h>
-#include <sys/time.h>
-
-#include <net/bpf.h>
-#include <net/ppp_defs.h>
-
-#include <stdio.h>
-#ifdef __osf__
-#include <stdlib.h>
-#include <malloc.h>
-#endif
-#ifdef __NetBSD__
-#include <stdlib.h>
-#endif
-#include <memory.h>
-
-#include "gencode.h"
-
-#ifndef __GNUC__
-#define inline
-#endif
-
-#define A_ATOM BPF_MEMWORDS
-#define X_ATOM (BPF_MEMWORDS+1)
-
-#define NOP -1
-
-/*
- * This define is used to represent *both* the accumulator and
- * x register in use-def computations.
- * Currently, the use-def code assumes only one definition per instruction.
- */
-#define AX_ATOM N_ATOMS
-
-/*
- * A flag to indicate that further optimization is needed.
- * Iterative passes are continued until a given pass yields no
- * branch movement.
- */
-static int done;
-
-/*
- * A block is marked if only if its mark equals the current mark.
- * Rather than traverse the code array, marking each item, 'cur_mark' is
- * incremented.  This automatically makes each element unmarked.
- */
-static int cur_mark;
-#define isMarked(p) ((p)->mark == cur_mark)
-#define unMarkAll() cur_mark += 1
-#define Mark(p) ((p)->mark = cur_mark)
-
-static void opt_init(struct block *);
-static void opt_cleanup(void);
-
-static void make_marks(struct block *);
-static void mark_code(struct block *);
-
-static void intern_blocks(struct block *);
-
-static int eq_slist(struct slist *, struct slist *);
-
-static void find_levels_r(struct block *);
-
-static void find_levels(struct block *);
-static void find_dom(struct block *);
-static void propedom(struct edge *);
-static void find_edom(struct block *);
-static void find_closure(struct block *);
-static int atomuse(struct stmt *);
-static int atomdef(struct stmt *);
-static void compute_local_ud(struct block *);
-static void find_ud(struct block *);
-static void init_val(void);
-static long F(int, long, long);
-static inline void vstore(struct stmt *, long *, long, int);
-static void opt_blk(struct block *, int);
-static int use_conflict(struct block *, struct block *);
-static void opt_j(struct edge *);
-static void or_pullup(struct block *);
-static void and_pullup(struct block *);
-static void opt_blks(struct block *, int);
-static inline void link_inedge(struct edge *, struct block *);
-static void find_inedges(struct block *);
-static void opt_root(struct block **);
-static void opt_loop(struct block *, int);
-static void fold_op(struct stmt *, long, long);
-static inline struct slist *this_op(struct slist *);
-static void opt_not(struct block *);
-static void opt_peep(struct block *);
-static void opt_stmt(struct stmt *, long[], int);
-static void deadstmt(struct stmt *, struct stmt *[]);
-static void opt_deadstores(struct block *);
-static void opt_blk(struct block *, int);
-static int use_conflict(struct block *, struct block *);
-static void opt_j(struct edge *);
-static struct block *fold_edge(struct block *, struct edge *);
-static inline int eq_blk(struct block *, struct block *);
-static int slength(struct slist *);
-static int count_blocks(struct block *);
-static void number_blks_r(struct block *);
-static int count_stmts(struct block *);
-static void convert_code_r(struct block *);
-
-static int n_blocks;
-struct block **blocks;
-static int n_edges;
-struct edge **edges;
-
-/*
- * A bit vector set representation of the dominators.
- * We round up the set size to the next power of two.
- */
-static int nodewords;
-static int edgewords;
-struct block **levels;
-u_long *space;
-#define BITS_PER_WORD (8*sizeof(u_long))
-/*
- * True if a is in uset {p}
- */
-#define SET_MEMBER(p, a) \
-((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
-
-/*
- * Add 'a' to uset p.
- */
-#define SET_INSERT(p, a) \
-(p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
-
-/*
- * Delete 'a' from uset p.
- */
-#define SET_DELETE(p, a) \
-(p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
-
-/*
- * a := a intersect b
- */
-#define SET_INTERSECT(a, b, n)\
-{\
-       register u_long *_x = a, *_y = b;\
-       register int _n = n;\
-       while (--_n >= 0) *_x++ &= *_y++;\
-}
-
-/*
- * a := a - b
- */
-#define SET_SUBTRACT(a, b, n)\
-{\
-       register u_long *_x = a, *_y = b;\
-       register int _n = n;\
-       while (--_n >= 0) *_x++ &=~ *_y++;\
-}
-
-/*
- * a := a union b
- */
-#define SET_UNION(a, b, n)\
-{\
-       register u_long *_x = a, *_y = b;\
-       register int _n = n;\
-       while (--_n >= 0) *_x++ |= *_y++;\
-}
-
-static uset all_dom_sets;
-static uset all_closure_sets;
-static uset all_edge_sets;
-
-#ifndef MAX
-#define MAX(a,b) ((a)>(b)?(a):(b))
-#endif
-
-static void
-find_levels_r(b)
-       struct block *b;
-{
-       int level;
-
-       if (isMarked(b))
-               return;
-
-       Mark(b);
-       b->link = 0;
-
-       if (JT(b)) {
-               find_levels_r(JT(b));
-               find_levels_r(JF(b));
-               level = MAX(JT(b)->level, JF(b)->level) + 1;
-       } else
-               level = 0;
-       b->level = level;
-       b->link = levels[level];
-       levels[level] = b;
-}
-
-/*
- * Level graph.  The levels go from 0 at the leaves to
- * N_LEVELS at the root.  The levels[] array points to the
- * first node of the level list, whose elements are linked
- * with the 'link' field of the struct block.
- */
-static void
-find_levels(root)
-       struct block *root;
-{
-       memset((char *)levels, 0, n_blocks * sizeof(*levels));
-       unMarkAll();
-       find_levels_r(root);
-}
-
-/*
- * Find dominator relationships.
- * Assumes graph has been leveled.
- */
-static void
-find_dom(root)
-       struct block *root;
-{
-       int i;
-       struct block *b;
-       u_long *x;
-
-       /*
-        * Initialize sets to contain all nodes.
-        */
-       x = all_dom_sets;
-       i = n_blocks * nodewords;
-       while (--i >= 0)
-               *x++ = ~0;
-       /* Root starts off empty. */
-       for (i = nodewords; --i >= 0;)
-               root->dom[i] = 0;
-
-       /* root->level is the highest level no found. */
-       for (i = root->level; i >= 0; --i) {
-               for (b = levels[i]; b; b = b->link) {
-                       SET_INSERT(b->dom, b->id);
-                       if (JT(b) == 0)
-                               continue;
-                       SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
-                       SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
-               }
-       }
-}
-
-static void
-propedom(ep)
-       struct edge *ep;
-{
-       SET_INSERT(ep->edom, ep->id);
-       if (ep->succ) {
-               SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
-               SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
-       }
-}
-
-/*
- * Compute edge dominators.
- * Assumes graph has been leveled and predecessors established.
- */
-static void
-find_edom(root)
-       struct block *root;
-{
-       int i;
-       uset x;
-       struct block *b;
-
-       x = all_edge_sets;
-       for (i = n_edges * edgewords; --i >= 0; )
-               x[i] = ~0;
-
-       /* root->level is the highest level no found. */
-       memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
-       memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
-       for (i = root->level; i >= 0; --i) {
-               for (b = levels[i]; b != 0; b = b->link) {
-                       propedom(&b->et);
-                       propedom(&b->ef);
-               }
-       }
-}
-
-/*
- * Find the backwards transitive closure of the flow graph.  These sets
- * are backwards in the sense that we find the set of nodes that reach
- * a given node, not the set of nodes that can be reached by a node.
- *
- * Assumes graph has been leveled.
- */
-static void
-find_closure(root)
-       struct block *root;
-{
-       int i;
-       struct block *b;
-
-       /*
-        * Initialize sets to contain no nodes.
-        */
-       memset((char *)all_closure_sets, 0,
-             n_blocks * nodewords * sizeof(*all_closure_sets));
-
-       /* root->level is the highest level no found. */
-       for (i = root->level; i >= 0; --i) {
-               for (b = levels[i]; b; b = b->link) {
-                       SET_INSERT(b->closure, b->id);
-                       if (JT(b) == 0)
-                               continue;
-                       SET_UNION(JT(b)->closure, b->closure, nodewords);
-                       SET_UNION(JF(b)->closure, b->closure, nodewords);
-               }
-       }
-}
-
-/*
- * Return the register number that is used by s.  If A and X are both
- * used, return AX_ATOM.  If no register is used, return -1.
- *
- * The implementation should probably change to an array access.
- */
-static int
-atomuse(s)
-       struct stmt *s;
-{
-       register int c = s->code;
-
-       if (c == NOP)
-               return -1;
-
-       switch (BPF_CLASS(c)) {
-
-       case BPF_RET:
-               return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
-                       (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
-
-       case BPF_LD:
-       case BPF_LDX:
-               return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
-                       (BPF_MODE(c) == BPF_MEM) ? s->k : -1;
-
-       case BPF_ST:
-               return A_ATOM;
-
-       case BPF_STX:
-               return X_ATOM;
-
-       case BPF_JMP:
-       case BPF_ALU:
-               if (BPF_SRC(c) == BPF_X)
-                       return AX_ATOM;
-               return A_ATOM;
-
-       case BPF_MISC:
-               return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
-       }
-       abort();
-       /* NOTREACHED */
-}
-
-/*
- * Return the register number that is defined by 's'.  We assume that
- * a single stmt cannot define more than one register.  If no register
- * is defined, return -1.
- *
- * The implementation should probably change to an array access.
- */
-static int
-atomdef(s)
-       struct stmt *s;
-{
-       if (s->code == NOP)
-               return -1;
-
-       switch (BPF_CLASS(s->code)) {
-
-       case BPF_LD:
-       case BPF_ALU:
-               return A_ATOM;
-
-       case BPF_LDX:
-               return X_ATOM;
-
-       case BPF_ST:
-       case BPF_STX:
-               return s->k;
-
-       case BPF_MISC:
-               return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
-       }
-       return -1;
-}
-
-static void
-compute_local_ud(b)
-       struct block *b;
-{
-       struct slist *s;
-       atomset def = 0, use = 0, kill = 0;
-       int atom;
-
-       for (s = b->stmts; s; s = s->next) {
-               if (s->s.code == NOP)
-                       continue;
-               atom = atomuse(&s->s);
-               if (atom >= 0) {
-                       if (atom == AX_ATOM) {
-                               if (!ATOMELEM(def, X_ATOM))
-                                       use |= ATOMMASK(X_ATOM);
-                               if (!ATOMELEM(def, A_ATOM))
-                                       use |= ATOMMASK(A_ATOM);
-                       }
-                       else if (atom < N_ATOMS) {
-                               if (!ATOMELEM(def, atom))
-                                       use |= ATOMMASK(atom);
-                       }
-                       else
-                               abort();
-               }
-               atom = atomdef(&s->s);
-               if (atom >= 0) {
-                       if (!ATOMELEM(use, atom))
-                               kill |= ATOMMASK(atom);
-                       def |= ATOMMASK(atom);
-               }
-       }
-       if (!ATOMELEM(def, A_ATOM) && BPF_CLASS(b->s.code) == BPF_JMP)
-               use |= ATOMMASK(A_ATOM);
-
-       b->def = def;
-       b->kill = kill;
-       b->in_use = use;
-}
-
-/*
- * Assume graph is already leveled.
- */
-static void
-find_ud(root)
-       struct block *root;
-{
-       int i, maxlevel;
-       struct block *p;
-
-       /*
-        * root->level is the highest level no found;
-        * count down from there.
-        */
-       maxlevel = root->level;
-       for (i = maxlevel; i >= 0; --i)
-               for (p = levels[i]; p; p = p->link) {
-                       compute_local_ud(p);
-                       p->out_use = 0;
-               }
-
-       for (i = 1; i <= maxlevel; ++i) {
-               for (p = levels[i]; p; p = p->link) {
-                       p->out_use |= JT(p)->in_use | JF(p)->in_use;
-                       p->in_use |= p->out_use &~ p->kill;
-               }
-       }
-}
-
-/*
- * These data structures are used in a Cocke and Shwarz style
- * value numbering scheme.  Since the flowgraph is acyclic,
- * exit values can be propagated from a node's predecessors
- * provided it is uniquely defined.
- */
-struct valnode {
-       int code;
-       long v0, v1;
-       long val;
-       struct valnode *next;
-};
-
-#define MODULUS 213
-static struct valnode *hashtbl[MODULUS];
-static int curval;
-static int maxval;
-
-/* Integer constants mapped with the load immediate opcode. */
-#define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
-
-struct vmapinfo {
-       int is_const;
-       long const_val;
-};
-
-struct vmapinfo *vmap;
-struct valnode *vnode_base;
-struct valnode *next_vnode;
-
-static void
-init_val()
-{
-       curval = 0;
-       next_vnode = vnode_base;
-       memset((char *)vmap, 0, maxval * sizeof(*vmap));
-       memset((char *)hashtbl, 0, sizeof hashtbl);
-}
-
-/* Because we really don't have an IR, this stuff is a little messy. */
-static long
-F(code, v0, v1)
-       int code;
-       long v0, v1;
-{
-       u_int hash;
-       int val;
-       struct valnode *p;
-
-       hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
-       hash %= MODULUS;
-
-       for (p = hashtbl[hash]; p; p = p->next)
-               if (p->code == code && p->v0 == v0 && p->v1 == v1)
-                       return p->val;
-
-       val = ++curval;
-       if (BPF_MODE(code) == BPF_IMM &&
-           (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
-               vmap[val].const_val = v0;
-               vmap[val].is_const = 1;
-       }
-       p = next_vnode++;
-       p->val = val;
-       p->code = code;
-       p->v0 = v0;
-       p->v1 = v1;
-       p->next = hashtbl[hash];
-       hashtbl[hash] = p;
-
-       return val;
-}
-
-static inline void
-vstore(s, valp, newval, alter)
-       struct stmt *s;
-       long *valp;
-       long newval;
-       int alter;
-{
-       if (alter && *valp == newval)
-               s->code = NOP;
-       else
-               *valp = newval;
-}
-
-static void
-fold_op(s, v0, v1)
-       struct stmt *s;
-       long v0, v1;
-{
-       long a, b;
-
-       a = vmap[v0].const_val;
-       b = vmap[v1].const_val;
-
-       switch (BPF_OP(s->code)) {
-       case BPF_ADD:
-               a += b;
-               break;
-
-       case BPF_SUB:
-               a -= b;
-               break;
-
-       case BPF_MUL:
-               a *= b;
-               break;
-
-       case BPF_DIV:
-               if (b == 0)
-                       bpf_error("division by zero");
-               a /= b;
-               break;
-
-       case BPF_AND:
-               a &= b;
-               break;
-
-       case BPF_OR:
-               a |= b;
-               break;
-
-       case BPF_LSH:
-               a <<= b;
-               break;
-
-       case BPF_RSH:
-               a >>= b;
-               break;
-
-       case BPF_NEG:
-               a = -a;
-               break;
-
-       default:
-               abort();
-       }
-       s->k = a;
-       s->code = BPF_LD|BPF_IMM;
-       done = 0;
-}
-
-static inline struct slist *
-this_op(s)
-       struct slist *s;
-{
-       while (s != 0 && s->s.code == NOP)
-               s = s->next;
-       return s;
-}
-
-static void
-opt_not(b)
-       struct block *b;
-{
-       struct block *tmp = JT(b);
-
-       JT(b) = JF(b);
-       JF(b) = tmp;
-}
-
-static void
-opt_peep(b)
-       struct block *b;
-{
-       struct slist *s;
-       struct slist *next, *last;
-       int val;
-       long v;
-
-       s = b->stmts;
-       if (s == 0)
-               return;
-
-       last = s;
-       while (1) {
-               s = this_op(s);
-               if (s == 0)
-                       break;
-               next = this_op(s->next);
-               if (next == 0)
-                       break;
-               last = next;
-
-               /*
-                * st  M[k]     -->     st  M[k]
-                * ldx M[k]             tax
-                */
-               if (s->s.code == BPF_ST &&
-                   next->s.code == (BPF_LDX|BPF_MEM) &&
-                   s->s.k == next->s.k) {
-                       done = 0;
-                       next->s.code = BPF_MISC|BPF_TAX;
-               }
-               /*
-                * ld  #k       -->     ldx  #k
-                * tax                  txa
-                */
-               if (s->s.code == (BPF_LD|BPF_IMM) &&
-                   next->s.code == (BPF_MISC|BPF_TAX)) {
-                       s->s.code = BPF_LDX|BPF_IMM;
-                       next->s.code = BPF_MISC|BPF_TXA;
-                       done = 0;
-               }
-               /*
-                * This is an ugly special case, but it happens
-                * when you say tcp[k] or udp[k] where k is a constant.
-                */
-               if (s->s.code == (BPF_LD|BPF_IMM)) {
-                       struct slist *add, *tax, *ild;
-
-                       /*
-                        * Check that X isn't used on exit from this
-                        * block (which the optimizer might cause).
-                        * We know the code generator won't generate
-                        * any local dependencies.
-                        */
-                       if (ATOMELEM(b->out_use, X_ATOM))
-                               break;
-
-                       if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
-                               add = next;
-                       else
-                               add = this_op(next->next);
-                       if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
-                               break;
-
-                       tax = this_op(add->next);
-                       if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
-                               break;
-
-                       ild = this_op(tax->next);
-                       if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
-                           BPF_MODE(ild->s.code) != BPF_IND)
-                               break;
-                       /*
-                        * XXX We need to check that X is not
-                        * subsequently used.  We know we can eliminate the
-                        * accumulator modifications since it is defined
-                        * by the last stmt of this sequence.
-                        *
-                        * We want to turn this sequence:
-                        *
-                        * (004) ldi     #0x2           {s}
-                        * (005) ldxms   [14]           {next}  -- optional
-                        * (006) addx                   {add}
-                        * (007) tax                    {tax}
-                        * (008) ild     [x+0]          {ild}
-                        *
-                        * into this sequence:
-                        *
-                        * (004) nop
-                        * (005) ldxms   [14]
-                        * (006) nop
-                        * (007) nop
-                        * (008) ild     [x+2]
-                        *
-                        */
-                       ild->s.k += s->s.k;
-                       s->s.code = NOP;
-                       add->s.code = NOP;
-                       tax->s.code = NOP;
-                       done = 0;
-               }
-               s = next;
-       }
-       /*
-        * If we have a subtract to do a comparison, and the X register
-        * is a known constant, we can merge this value into the
-        * comparison.
-        */
-       if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X) &&
-           !ATOMELEM(b->out_use, A_ATOM)) {
-               val = b->val[X_ATOM];
-               if (vmap[val].is_const) {
-                       b->s.k += vmap[val].const_val;
-                       last->s.code = NOP;
-                       done = 0;
-               } else if (b->s.k == 0) {
-                       /*
-                        * sub x  ->    nop
-                        * j  #0        j  x
-                        */
-                       last->s.code = NOP;
-                       b->s.code = BPF_CLASS(b->s.code) | BPF_OP(b->s.code) |
-                               BPF_X;
-                       done = 0;
-               }
-       }
-       /*
-        * Likewise, a constant subtract can be simplified.
-        */
-       else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K) &&
-                !ATOMELEM(b->out_use, A_ATOM)) {
-               b->s.k += last->s.k;
-               last->s.code = NOP;
-               done = 0;
-       }
-       /*
-        * and #k       nop
-        * jeq #0  ->   jset #k
-        */
-       if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
-           !ATOMELEM(b->out_use, A_ATOM) && b->s.k == 0) {
-               b->s.k = last->s.k;
-               b->s.code = BPF_JMP|BPF_K|BPF_JSET;
-               last->s.code = NOP;
-               done = 0;
-               opt_not(b);
-       }
-       /*
-        * If the accumulator is a known constant, we can compute the
-        * comparison result.
-        */
-       val = b->val[A_ATOM];
-       if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
-               v = vmap[val].const_val;
-               switch (BPF_OP(b->s.code)) {
-
-               case BPF_JEQ:
-                       v = v == b->s.k;
-                       break;
-
-               case BPF_JGT:
-                       v = v > b->s.k;
-                       break;
-
-               case BPF_JGE:
-                       v = v >= b->s.k;
-                       break;
-
-               case BPF_JSET:
-                       v &= b->s.k;
-                       break;
-
-               default:
-                       abort();
-               }
-               if (JF(b) != JT(b))
-                       done = 0;
-               if (v)
-                       JF(b) = JT(b);
-               else
-                       JT(b) = JF(b);
-       }
-}
-
-/*
- * Compute the symbolic value of expression of 's', and update
- * anything it defines in the value table 'val'.  If 'alter' is true,
- * do various optimizations.  This code would be cleaner if symbolic
- * evaluation and code transformations weren't folded together.
- */
-static void
-opt_stmt(s, val, alter)
-       struct stmt *s;
-       long val[];
-       int alter;
-{
-       int op;
-       long v;
-
-       switch (s->code) {
-
-       case BPF_LD|BPF_ABS|BPF_W:
-       case BPF_LD|BPF_ABS|BPF_H:
-       case BPF_LD|BPF_ABS|BPF_B:
-               v = F(s->code, s->k, 0L);
-               vstore(s, &val[A_ATOM], v, alter);
-               break;
-
-       case BPF_LD|BPF_IND|BPF_W:
-       case BPF_LD|BPF_IND|BPF_H:
-       case BPF_LD|BPF_IND|BPF_B:
-               v = val[X_ATOM];
-               if (alter && vmap[v].is_const) {
-                       s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
-                       s->k += vmap[v].const_val;
-                       v = F(s->code, s->k, 0L);
-                       done = 0;
-               }
-               else
-                       v = F(s->code, s->k, v);
-               vstore(s, &val[A_ATOM], v, alter);
-               break;
-
-       case BPF_LD|BPF_LEN:
-               v = F(s->code, 0L, 0L);
-               vstore(s, &val[A_ATOM], v, alter);
-               break;
-
-       case BPF_LD|BPF_IMM:
-               v = K(s->k);
-               vstore(s, &val[A_ATOM], v, alter);
-               break;
-
-       case BPF_LDX|BPF_IMM:
-               v = K(s->k);
-               vstore(s, &val[X_ATOM], v, alter);
-               break;
-
-       case BPF_LDX|BPF_MSH|BPF_B:
-               v = F(s->code, s->k, 0L);
-               vstore(s, &val[X_ATOM], v, alter);
-               break;
-
-       case BPF_ALU|BPF_NEG:
-               if (alter && vmap[val[A_ATOM]].is_const) {
-                       s->code = BPF_LD|BPF_IMM;
-                       s->k = -vmap[val[A_ATOM]].const_val;
-                       val[A_ATOM] = K(s->k);
-               }
-               else
-                       val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
-               break;
-
-       case BPF_ALU|BPF_ADD|BPF_K:
-       case BPF_ALU|BPF_SUB|BPF_K:
-       case BPF_ALU|BPF_MUL|BPF_K:
-       case BPF_ALU|BPF_DIV|BPF_K:
-       case BPF_ALU|BPF_AND|BPF_K:
-       case BPF_ALU|BPF_OR|BPF_K:
-       case BPF_ALU|BPF_LSH|BPF_K:
-       case BPF_ALU|BPF_RSH|BPF_K:
-               op = BPF_OP(s->code);
-               if (alter) {
-                       if (s->k == 0) {
-                               if (op == BPF_ADD || op == BPF_SUB ||
-                                   op == BPF_LSH || op == BPF_RSH ||
-                                   op == BPF_OR) {
-                                       s->code = NOP;
-                                       break;
-                               }
-                               if (op == BPF_MUL || op == BPF_AND) {
-                                       s->code = BPF_LD|BPF_IMM;
-                                       val[A_ATOM] = K(s->k);
-                                       break;
-                               }
-                       }
-                       if (vmap[val[A_ATOM]].is_const) {
-                               fold_op(s, val[A_ATOM], K(s->k));
-                               val[A_ATOM] = K(s->k);
-                               break;
-                       }
-               }
-               val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
-               break;
-
-       case BPF_ALU|BPF_ADD|BPF_X:
-       case BPF_ALU|BPF_SUB|BPF_X:
-       case BPF_ALU|BPF_MUL|BPF_X:
-       case BPF_ALU|BPF_DIV|BPF_X:
-       case BPF_ALU|BPF_AND|BPF_X:
-       case BPF_ALU|BPF_OR|BPF_X:
-       case BPF_ALU|BPF_LSH|BPF_X:
-       case BPF_ALU|BPF_RSH|BPF_X:
-               op = BPF_OP(s->code);
-               if (alter && vmap[val[X_ATOM]].is_const) {
-                       if (vmap[val[A_ATOM]].is_const) {
-                               fold_op(s, val[A_ATOM], val[X_ATOM]);
-                               val[A_ATOM] = K(s->k);
-                       }
-                       else {
-                               s->code = BPF_ALU|BPF_K|op;
-                               s->k = vmap[val[X_ATOM]].const_val;
-                               done = 0;
-                               val[A_ATOM] =
-                                       F(s->code, val[A_ATOM], K(s->k));
-                       }
-                       break;
-               }
-               /*
-                * Check if we're doing something to an accumulator
-                * that is 0, and simplify.  This may not seem like
-                * much of a simplification but it could open up further
-                * optimizations.
-                * XXX We could also check for mul by 1, and -1, etc.
-                */
-               if (alter && vmap[val[A_ATOM]].is_const
-                   && vmap[val[A_ATOM]].const_val == 0) {
-                       if (op == BPF_ADD || op == BPF_OR ||
-                           op == BPF_LSH || op == BPF_RSH || op == BPF_SUB) {
-                               s->code = BPF_MISC|BPF_TXA;
-                               vstore(s, &val[A_ATOM], val[X_ATOM], alter);
-                               break;
-                       }
-                       else if (op == BPF_MUL || op == BPF_DIV ||
-                                op == BPF_AND) {
-                               s->code = BPF_LD|BPF_IMM;
-                               s->k = 0;
-                               vstore(s, &val[A_ATOM], K(s->k), alter);
-                               break;
-                       }
-                       else if (op == BPF_NEG) {
-                               s->code = NOP;
-                               break;
-                       }
-               }
-               val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
-               break;
-
-       case BPF_MISC|BPF_TXA:
-               vstore(s, &val[A_ATOM], val[X_ATOM], alter);
-               break;
-
-       case BPF_LD|BPF_MEM:
-               v = val[s->k];
-               if (alter && vmap[v].is_const) {
-                       s->code = BPF_LD|BPF_IMM;
-                       s->k = vmap[v].const_val;
-                       done = 0;
-               }
-               vstore(s, &val[A_ATOM], v, alter);
-               break;
-
-       case BPF_MISC|BPF_TAX:
-               vstore(s, &val[X_ATOM], val[A_ATOM], alter);
-               break;
-
-       case BPF_LDX|BPF_MEM:
-               v = val[s->k];
-               if (alter && vmap[v].is_const) {
-                       s->code = BPF_LDX|BPF_IMM;
-                       s->k = vmap[v].const_val;
-                       done = 0;
-               }
-               vstore(s, &val[X_ATOM], v, alter);
-               break;
-
-       case BPF_ST:
-               vstore(s, &val[s->k], val[A_ATOM], alter);
-               break;
-
-       case BPF_STX:
-               vstore(s, &val[s->k], val[X_ATOM], alter);
-               break;
-       }
-}
-
-static void
-deadstmt(s, last)
-       register struct stmt *s;
-       register struct stmt *last[];
-{
-       register int atom;
-
-       atom = atomuse(s);
-       if (atom >= 0) {
-               if (atom == AX_ATOM) {
-                       last[X_ATOM] = 0;
-                       last[A_ATOM] = 0;
-               }
-               else
-                       last[atom] = 0;
-       }
-       atom = atomdef(s);
-       if (atom >= 0) {
-               if (last[atom]) {
-                       done = 0;
-                       last[atom]->code = NOP;
-               }
-               last[atom] = s;
-       }
-}
-
-static void
-opt_deadstores(b)
-       register struct block *b;
-{
-       register struct slist *s;
-       register int atom;
-       struct stmt *last[N_ATOMS];
-
-       memset((char *)last, 0, sizeof last);
-
-       for (s = b->stmts; s != 0; s = s->next)
-               deadstmt(&s->s, last);
-       deadstmt(&b->s, last);
-
-       for (atom = 0; atom < N_ATOMS; ++atom)
-               if (last[atom] && !ATOMELEM(b->out_use, atom)) {
-                       last[atom]->code = NOP;
-                       done = 0;
-               }
-}
-
-static void
-opt_blk(b, do_stmts)
-       struct block *b;
-       int do_stmts;
-{
-       struct slist *s;
-       struct edge *p;
-       int i;
-       long aval;
-
-       /*
-        * Initialize the atom values.
-        * If we have no predecessors, everything is undefined.
-        * Otherwise, we inherent our values from our predecessors.
-        * If any register has an ambiguous value (i.e. control paths are
-        * merging) give it the undefined value of 0.
-        */
-       p = b->in_edges;
-       if (p == 0)
-               memset((char *)b->val, 0, sizeof(b->val));
-       else {
-               memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
-               while ((p = p->next) != NULL) {
-                       for (i = 0; i < N_ATOMS; ++i)
-                               if (b->val[i] != p->pred->val[i])
-                                       b->val[i] = 0;
-               }
-       }
-       aval = b->val[A_ATOM];
-       for (s = b->stmts; s; s = s->next)
-               opt_stmt(&s->s, b->val, do_stmts);
-
-       /*
-        * This is a special case: if we don't use anything from this
-        * block, and we load the accumulator with value that is
-        * already there, eliminate all the statements.
-        */
-       if (do_stmts && b->out_use == 0 && aval != 0 &&
-           b->val[A_ATOM] == aval)
-               b->stmts = 0;
-       else {
-               opt_peep(b);
-               opt_deadstores(b);
-       }
-       /*
-        * Set up values for branch optimizer.
-        */
-       if (BPF_SRC(b->s.code) == BPF_K)
-               b->oval = K(b->s.k);
-       else
-               b->oval = b->val[X_ATOM];
-       b->et.code = b->s.code;
-       b->ef.code = -b->s.code;
-}
-
-/*
- * Return true if any register that is used on exit from 'succ', has
- * an exit value that is different from the corresponding exit value
- * from 'b'.
- */
-static int
-use_conflict(b, succ)
-       struct block *b, *succ;
-{
-       int atom;
-       atomset use = succ->out_use;
-
-       if (use == 0)
-               return 0;
-
-       for (atom = 0; atom < N_ATOMS; ++atom)
-               if (ATOMELEM(use, atom))
-                       if (b->val[atom] != succ->val[atom])
-                               return 1;
-       return 0;
-}
-
-static struct block *
-fold_edge(child, ep)
-       struct block *child;
-       struct edge *ep;
-{
-       int sense;
-       int aval0, aval1, oval0, oval1;
-       int code = ep->code;
-
-       if (code < 0) {
-               code = -code;
-               sense = 0;
-       } else
-               sense = 1;
-
-       if (child->s.code != code)
-               return 0;
-
-       aval0 = child->val[A_ATOM];
-       oval0 = child->oval;
-       aval1 = ep->pred->val[A_ATOM];
-       oval1 = ep->pred->oval;
-
-       if (aval0 != aval1)
-               return 0;
-
-       if (oval0 == oval1)
-               /*
-                * The operands are identical, so the
-                * result is true if a true branch was
-                * taken to get here, otherwise false.
-                */
-               return sense ? JT(child) : JF(child);
-
-       if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
-               /*
-                * At this point, we only know the comparison if we
-                * came down the true branch, and it was an equality
-                * comparison with a constant.  We rely on the fact that
-                * distinct constants have distinct value numbers.
-                */
-               return JF(child);
-
-       return 0;
-}
-
-static void
-opt_j(ep)
-       struct edge *ep;
-{
-       register int i, k;
-       register struct block *target;
-
-       if (JT(ep->succ) == 0)
-               return;
-
-       if (JT(ep->succ) == JF(ep->succ)) {
-               /*
-                * Common branch targets can be eliminated, provided
-                * there is no data dependency.
-                */
-               if (!use_conflict(ep->pred, ep->succ->et.succ)) {
-                       done = 0;
-                       ep->succ = JT(ep->succ);
-               }
-       }
-       /*
-        * For each edge dominator that matches the successor of this
-        * edge, promote the edge successor to the its grandchild.
-        *
-        * XXX We violate the set abstraction here in favor a reasonably
-        * efficient loop.
-        */
- top:
-       for (i = 0; i < edgewords; ++i) {
-               register u_long x = ep->edom[i];
-
-               while (x != 0) {
-                       k = ffs(x) - 1;
-                       x &=~ (1 << k);
-                       k += i * BITS_PER_WORD;
-
-                       target = fold_edge(ep->succ, edges[k]);
-                       /*
-                        * Check that there is no data dependency between
-                        * nodes that will be violated if we move the edge.
-                        */
-                       if (target != 0 && !use_conflict(ep->pred, target)) {
-                               done = 0;
-                               ep->succ = target;
-                               if (JT(target) != 0)
-                                       /*
-                                        * Start over unless we hit a leaf.
-                                        */
-                                       goto top;
-                               return;
-                       }
-               }
-       }
-}
-
-
-static void
-or_pullup(b)
-       struct block *b;
-{
-       int val, at_top;
-       struct block *pull;
-       struct block **diffp, **samep;
-       struct edge *ep;
-
-       ep = b->in_edges;
-       if (ep == 0)
-               return;
-
-       /*
-        * Make sure each predecessor loads the same value.
-        * XXX why?
-        */
-       val = ep->pred->val[A_ATOM];
-       for (ep = ep->next; ep != 0; ep = ep->next)
-               if (val != ep->pred->val[A_ATOM])
-                       return;
-
-       if (JT(b->in_edges->pred) == b)
-               diffp = &JT(b->in_edges->pred);
-       else
-               diffp = &JF(b->in_edges->pred);
-
-       at_top = 1;
-       while (1) {
-               if (*diffp == 0)
-                       return;
-
-               if (JT(*diffp) != JT(b))
-                       return;
-
-               if (!SET_MEMBER((*diffp)->dom, b->id))
-                       return;
-
-               if ((*diffp)->val[A_ATOM] != val)
-                       break;
-
-               diffp = &JF(*diffp);
-               at_top = 0;
-       }
-       samep = &JF(*diffp);
-       while (1) {
-               if (*samep == 0)
-                       return;
-
-               if (JT(*samep) != JT(b))
-                       return;
-
-               if (!SET_MEMBER((*samep)->dom, b->id))
-                       return;
-
-               if ((*samep)->val[A_ATOM] == val)
-                       break;
-
-               /* XXX Need to check that there are no data dependencies
-                  between dp0 and dp1.  Currently, the code generator
-                  will not produce such dependencies. */
-               samep = &JF(*samep);
-       }
-#ifdef notdef
-       /* XXX This doesn't cover everything. */
-       for (i = 0; i < N_ATOMS; ++i)
-               if ((*samep)->val[i] != pred->val[i])
-                       return;
-#endif
-       /* Pull up the node. */
-       pull = *samep;
-       *samep = JF(pull);
-       JF(pull) = *diffp;
-
-       /*
-        * At the top of the chain, each predecessor needs to point at the
-        * pulled up node.  Inside the chain, there is only one predecessor
-        * to worry about.
-        */
-       if (at_top) {
-               for (ep = b->in_edges; ep != 0; ep = ep->next) {
-                       if (JT(ep->pred) == b)
-                               JT(ep->pred) = pull;
-                       else
-                               JF(ep->pred) = pull;
-               }
-       }
-       else
-               *diffp = pull;
-
-       done = 0;
-}
-
-static void
-and_pullup(b)
-       struct block *b;
-{
-       int val, at_top;
-       struct block *pull;
-       struct block **diffp, **samep;
-       struct edge *ep;
-
-       ep = b->in_edges;
-       if (ep == 0)
-               return;
-
-       /*
-        * Make sure each predecessor loads the same value.
-        */
-       val = ep->pred->val[A_ATOM];
-       for (ep = ep->next; ep != 0; ep = ep->next)
-               if (val != ep->pred->val[A_ATOM])
-                       return;
-
-       if (JT(b->in_edges->pred) == b)
-               diffp = &JT(b->in_edges->pred);
-       else
-               diffp = &JF(b->in_edges->pred);
-
-       at_top = 1;
-       while (1) {
-               if (*diffp == 0)
-                       return;
-
-               if (JF(*diffp) != JF(b))
-                       return;
-
-               if (!SET_MEMBER((*diffp)->dom, b->id))
-                       return;
-
-               if ((*diffp)->val[A_ATOM] != val)
-                       break;
-
-               diffp = &JT(*diffp);
-               at_top = 0;
-       }
-       samep = &JT(*diffp);
-       while (1) {
-               if (*samep == 0)
-                       return;
-
-               if (JF(*samep) != JF(b))
-                       return;
-
-               if (!SET_MEMBER((*samep)->dom, b->id))
-                       return;
-
-               if ((*samep)->val[A_ATOM] == val)
-                       break;
-
-               /* XXX Need to check that there are no data dependencies
-                  between diffp and samep.  Currently, the code generator
-                  will not produce such dependencies. */
-               samep = &JT(*samep);
-       }
-#ifdef notdef
-       /* XXX This doesn't cover everything. */
-       for (i = 0; i < N_ATOMS; ++i)
-               if ((*samep)->val[i] != pred->val[i])
-                       return;
-#endif
-       /* Pull up the node. */
-       pull = *samep;
-       *samep = JT(pull);
-       JT(pull) = *diffp;
-
-       /*
-        * At the top of the chain, each predecessor needs to point at the
-        * pulled up node.  Inside the chain, there is only one predecessor
-        * to worry about.
-        */
-       if (at_top) {
-               for (ep = b->in_edges; ep != 0; ep = ep->next) {
-                       if (JT(ep->pred) == b)
-                               JT(ep->pred) = pull;
-                       else
-                               JF(ep->pred) = pull;
-               }
-       }
-       else
-               *diffp = pull;
-
-       done = 0;
-}
-
-static void
-opt_blks(root, do_stmts)
-       struct block *root;
-       int do_stmts;
-{
-       int i, maxlevel;
-       struct block *p;
-
-       init_val();
-       maxlevel = root->level;
-       for (i = maxlevel; i >= 0; --i)
-               for (p = levels[i]; p; p = p->link)
-                       opt_blk(p, do_stmts);
-
-       if (do_stmts)
-               /*
-                * No point trying to move branches; it can't possibly
-                * make a difference at this point.
-                */
-               return;
-
-       for (i = 1; i <= maxlevel; ++i) {
-               for (p = levels[i]; p; p = p->link) {
-                       opt_j(&p->et);
-                       opt_j(&p->ef);
-               }
-       }
-       for (i = 1; i <= maxlevel; ++i) {
-               for (p = levels[i]; p; p = p->link) {
-                       or_pullup(p);
-                       and_pullup(p);
-               }
-       }
-}
-
-static inline void
-link_inedge(parent, child)
-       struct edge *parent;
-       struct block *child;
-{
-       parent->next = child->in_edges;
-       child->in_edges = parent;
-}
-
-static void
-find_inedges(root)
-       struct block *root;
-{
-       int i;
-       struct block *b;
-
-       for (i = 0; i < n_blocks; ++i)
-               blocks[i]->in_edges = 0;
-
-       /*
-        * Traverse the graph, adding each edge to the predecessor
-        * list of its successors.  Skip the leaves (i.e. level 0).
-        */
-       for (i = root->level; i > 0; --i) {
-               for (b = levels[i]; b != 0; b = b->link) {
-                       link_inedge(&b->et, JT(b));
-                       link_inedge(&b->ef, JF(b));
-               }
-       }
-}
-
-static void
-opt_root(b)
-       struct block **b;
-{
-       struct slist *tmp, *s;
-
-       s = (*b)->stmts;
-       (*b)->stmts = 0;
-       while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
-               *b = JT(*b);
-
-       tmp = (*b)->stmts;
-       if (tmp != 0)
-               sappend(s, tmp);
-       (*b)->stmts = s;
-}
-
-static void
-opt_loop(root, do_stmts)
-       struct block *root;
-       int do_stmts;
-{
-
-#ifdef BDEBUG
-       if (dflag > 1)
-               opt_dump(root);
-#endif
-       do {
-               done = 1;
-               find_levels(root);
-               find_dom(root);
-               find_closure(root);
-               find_inedges(root);
-               find_ud(root);
-               find_edom(root);
-               opt_blks(root, do_stmts);
-#ifdef BDEBUG
-               if (dflag > 1)
-                       opt_dump(root);
-#endif
-       } while (!done);
-}
-
-/*
- * Optimize the filter code in its dag representation.
- */
-void
-bpf_optimize(rootp)
-       struct block **rootp;
-{
-       struct block *root;
-
-       root = *rootp;
-
-       opt_init(root);
-       opt_loop(root, 0);
-       opt_loop(root, 1);
-       intern_blocks(root);
-       opt_root(rootp);
-       opt_cleanup();
-}
-
-static void
-make_marks(p)
-       struct block *p;
-{
-       if (!isMarked(p)) {
-               Mark(p);
-               if (BPF_CLASS(p->s.code) != BPF_RET) {
-                       make_marks(JT(p));
-                       make_marks(JF(p));
-               }
-       }
-}
-
-/*
- * Mark code array such that isMarked(i) is true
- * only for nodes that are alive.
- */
-static void
-mark_code(p)
-       struct block *p;
-{
-       cur_mark += 1;
-       make_marks(p);
-}
-
-/*
- * True iff the two stmt lists load the same value from the packet into
- * the accumulator.
- */
-static int
-eq_slist(x, y)
-       struct slist *x, *y;
-{
-       while (1) {
-               while (x && x->s.code == NOP)
-                       x = x->next;
-               while (y && y->s.code == NOP)
-                       y = y->next;
-               if (x == 0)
-                       return y == 0;
-               if (y == 0)
-                       return x == 0;
-               if (x->s.code != y->s.code || x->s.k != y->s.k)
-                       return 0;
-               x = x->next;
-               y = y->next;
-       }
-}
-
-static inline int
-eq_blk(b0, b1)
-       struct block *b0, *b1;
-{
-       if (b0->s.code == b1->s.code &&
-           b0->s.k == b1->s.k &&
-           b0->et.succ == b1->et.succ &&
-           b0->ef.succ == b1->ef.succ)
-               return eq_slist(b0->stmts, b1->stmts);
-       return 0;
-}
-
-static void
-intern_blocks(root)
-       struct block *root;
-{
-       struct block *p;
-       int i, j;
-       int done;
- top:
-       done = 1;
-       for (i = 0; i < n_blocks; ++i)
-               blocks[i]->link = 0;
-
-       mark_code(root);
-
-       for (i = n_blocks - 1; --i >= 0; ) {
-               if (!isMarked(blocks[i]))
-                       continue;
-               for (j = i + 1; j < n_blocks; ++j) {
-                       if (!isMarked(blocks[j]))
-                               continue;
-                       if (eq_blk(blocks[i], blocks[j])) {
-                               blocks[i]->link = blocks[j]->link ?
-                                       blocks[j]->link : blocks[j];
-                               break;
-                       }
-               }
-       }
-       for (i = 0; i < n_blocks; ++i) {
-               p = blocks[i];
-               if (JT(p) == 0)
-                       continue;
-               if (JT(p)->link) {
-                       done = 0;
-                       JT(p) = JT(p)->link;
-               }
-               if (JF(p)->link) {
-                       done = 0;
-                       JF(p) = JF(p)->link;
-               }
-       }
-       if (!done)
-               goto top;
-}
-
-static void
-opt_cleanup()
-{
-       free((void *)vnode_base);
-       free((void *)vmap);
-       free((void *)edges);
-       free((void *)space);
-       free((void *)levels);
-       free((void *)blocks);
-}
-
-/*
- * Return the number of stmts in 's'.
- */
-static int
-slength(s)
-       struct slist *s;
-{
-       int n = 0;
-
-       for (; s; s = s->next)
-               if (s->s.code != NOP)
-                       ++n;
-       return n;
-}
-
-/*
- * Return the number of nodes reachable by 'p'.
- * All nodes should be initially unmarked.
- */
-static int
-count_blocks(p)
-       struct block *p;
-{
-       if (p == 0 || isMarked(p))
-               return 0;
-       Mark(p);
-       return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
-}
-
-/*
- * Do a depth first search on the flow graph, numbering the
- * the basic blocks, and entering them into the 'blocks' array.`
- */
-static void
-number_blks_r(p)
-       struct block *p;
-{
-       int n;
-
-       if (p == 0 || isMarked(p))
-               return;
-
-       Mark(p);
-       n = n_blocks++;
-       p->id = n;
-       blocks[n] = p;
-
-       number_blks_r(JT(p));
-       number_blks_r(JF(p));
-}
-
-/*
- * Return the number of stmts in the flowgraph reachable by 'p'.
- * The nodes should be unmarked before calling.
- */
-static int
-count_stmts(p)
-       struct block *p;
-{
-       int n;
-
-       if (p == 0 || isMarked(p))
-               return 0;
-       Mark(p);
-       n = count_stmts(JT(p)) + count_stmts(JF(p));
-       return slength(p->stmts) + n + 1;
-}
-
-/*
- * Allocate memory.  All allocation is done before optimization
- * is begun.  A linear bound on the size of all data structures is computed
- * from the total number of blocks and/or statements.
- */
-static void
-opt_init(root)
-       struct block *root;
-{
-       u_long *p;
-       int i, n, max_stmts;
-
-       /*
-        * First, count the blocks, so we can malloc an array to map
-        * block number to block.  Then, put the blocks into the array.
-        */
-       unMarkAll();
-       n = count_blocks(root);
-       blocks = (struct block **)malloc(n * sizeof(*blocks));
-       unMarkAll();
-       n_blocks = 0;
-       number_blks_r(root);
-
-       n_edges = 2 * n_blocks;
-       edges = (struct edge **)malloc(n_edges * sizeof(*edges));
-
-       /*
-        * The number of levels is bounded by the number of nodes.
-        */
-       levels = (struct block **)malloc(n_blocks * sizeof(*levels));
-
-       edgewords = n_edges / (8 * sizeof(u_long)) + 1;
-       nodewords = n_blocks / (8 * sizeof(u_long)) + 1;
-
-       /* XXX */
-       space = (u_long *)malloc(2 * n_blocks * nodewords * sizeof(*space)
-                                + n_edges * edgewords * sizeof(*space));
-       p = space;
-       all_dom_sets = p;
-       for (i = 0; i < n; ++i) {
-               blocks[i]->dom = p;
-               p += nodewords;
-       }
-       all_closure_sets = p;
-       for (i = 0; i < n; ++i) {
-               blocks[i]->closure = p;
-               p += nodewords;
-       }
-       all_edge_sets = p;
-       for (i = 0; i < n; ++i) {
-               register struct block *b = blocks[i];
-
-               b->et.edom = p;
-               p += edgewords;
-               b->ef.edom = p;
-               p += edgewords;
-               b->et.id = i;
-               edges[i] = &b->et;
-               b->ef.id = n_blocks + i;
-               edges[n_blocks + i] = &b->ef;
-               b->et.pred = b;
-               b->ef.pred = b;
-       }
-       max_stmts = 0;
-       for (i = 0; i < n; ++i)
-               max_stmts += slength(blocks[i]->stmts) + 1;
-       /*
-        * We allocate at most 3 value numbers per statement,
-        * so this is an upper bound on the number of valnodes
-        * we'll need.
-        */
-       maxval = 3 * max_stmts;
-       vmap = (struct vmapinfo *)malloc(maxval * sizeof(*vmap));
-       vnode_base = (struct valnode *)malloc(maxval * sizeof(*vmap));
-}
-
-/*
- * Some pointers used to convert the basic block form of the code,
- * into the array form that BPF requires.  'fstart' will point to
- * the malloc'd array while 'ftail' is used during the recursive traversal.
- */
-static struct bpf_insn *fstart;
-static struct bpf_insn *ftail;
-
-#ifdef BDEBUG
-int bids[1000];
-#endif
-
-static void
-convert_code_r(p)
-       struct block *p;
-{
-       struct bpf_insn *dst;
-       struct slist *src;
-       int slen;
-       u_int off;
-
-       if (p == 0 || isMarked(p))
-               return;
-       Mark(p);
-
-       convert_code_r(JF(p));
-       convert_code_r(JT(p));
-
-       slen = slength(p->stmts);
-       dst = ftail -= slen + 1;
-
-       p->offset = dst - fstart;
-
-       for (src = p->stmts; src; src = src->next) {
-               if (src->s.code == NOP)
-                       continue;
-               dst->code = (u_short)src->s.code;
-               dst->k = src->s.k;
-               ++dst;
-       }
-#ifdef BDEBUG
-       bids[dst - fstart] = p->id + 1;
-#endif
-       dst->code = (u_short)p->s.code;
-       dst->k = p->s.k;
-       if (JT(p)) {
-               off = JT(p)->offset - (p->offset + slen) - 1;
-               if (off >= 256)
-                       bpf_error("long jumps not supported");
-               dst->jt = off;
-               off = JF(p)->offset - (p->offset + slen) - 1;
-               if (off >= 256)
-                       bpf_error("long jumps not supported");
-               dst->jf = off;
-       }
-}
-
-
-/*
- * Convert flowgraph intermediate representation to the
- * BPF array representation.  Set *lenp to the number of instructions.
- */
-struct bpf_insn *
-icode_to_fcode(root, lenp)
-       struct block *root;
-       int *lenp;
-{
-       int n;
-       struct bpf_insn *fp;
-
-       unMarkAll();
-       n = *lenp = count_stmts(root);
-
-       fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
-       memset((char *)fp, 0, sizeof(*fp) * n);
-       fstart = fp;
-       ftail = fp + n;
-
-       unMarkAll();
-       convert_code_r(root);
-
-       return fp;
-}
-
-#ifdef BDEBUG
-opt_dump(root)
-       struct block *root;
-{
-       struct bpf_program f;
-
-       memset(bids, 0, sizeof bids);
-       f.bf_insns = icode_to_fcode(root, &f.bf_len);
-       bpf_dump(&f, 1);
-       putchar('\n');
-       free((char *)f.bf_insns);
-}
-#endif