
TDB2: A Redesigning The Trivial DataBase

Rusty Russell, IBM Corporation

26-July9-September-2010

Abstract

The Trivial DataBase on-disk format is 32 bits; with usage cases head-

ing towards the 4G limit, that must change. This required breakage pro-

vides an opportunity to revisit TDB's other design decisions and reassess

them.

1 Introduction

The Trivial DataBase was originally written by Andrew Tridgell as a simple
key/data pair storage system with the same API as dbm, but allowing multiple
readers and writers while being small enough (< 1000 lines of C) to include in
SAMBA. The simple design created in 1999 has proven surprisingly robust and
performant, used in Samba versions 3 and 4 as well as numerous other projects.
Its useful life was greatly increased by the (backwards-compatible!) addition of
transaction support in 2005.

The wider variety and greater demands of TDB-using code has lead to some
organic growth of the API, as well as some compromises on the implementation.
None of these, by themselves, are seen as show-stoppers, but the cumulative
e�ect is to a loss of elegance over the initial, simple TDB implementation. Here
is a table of the approximate number of lines of implementation code and number
of API functions at the end of each year:

Year End API Functions Lines of C Code Implementation

1999 13 1195
2000 24 1725
2001 32 2228
2002 35 2481
2003 35 2552
2004 40 2584
2005 38 2647
2006 52 3754
2007 66 4398
2008 71 4768
2009 73 5715

1



This review is an attempt to catalog and address all the known issues with
TDB and create solutions which address the problems without signi�cantly in-
creasing complexity; all involved are far too aware of the dangers of second
system syndrome in rewriting a successful project like this.

2 API Issues

2.1 tdb_open_ex Is Not Expandable

The tdb_open() call was expanded to tdb_open_ex(), which added an op-
tional hashing function and an optional logging function argument. Additional
arguments to open would require the introduction of a tdb_open_ex2 call etc.

2.1.1 Proposed Solution

tdb_open() will take a linked-list of attributes:

enum tdb_attribute {

TDB_ATTRIBUTE_LOG = 0,

TDB_ATTRIBUTE_HASH = 1

};

struct tdb_attribute_base {

enum tdb_attribute attr;

union tdb_attribute *next;

};

struct tdb_attribute_log {

struct tdb_attribute_base base; /* .attr = TDB_ATTRIBUTE_LOG */

tdb_log_func log_fn;

void *log_private;

};

struct tdb_attribute_hash {

struct tdb_attribute_base base; /* .attr = TDB_ATTRIBUTE_HASH */

tdb_hash_func hash_fn;

void *hash_private;

};

union tdb_attribute {

struct tdb_attribute_base base;

struct tdb_attribute_log log;

struct tdb_attribute_hash hash;

};

This allows future attributes to be added, even if this expands the size of the
union.

2



2.2 tdb_traverse Makes Impossible Guarantees

tdb_traverse (and tdb_�rstkey/tdb_nextkey) predate transactions, and it was
thought that it was important to guarantee that all records which exist at the
start and end of the traversal would be included, and no record would be in-
cluded twice.

This adds complexity (see3.12) and does not work anyway for records which
are altered (in particular, those which are expanded may be e�ectively deleted
and re-added behind the traversal).

2.2.1 Proposed Solution

Abandon the guarantee. You will see every record if no changes occur during
your traversal, otherwise you will see some subset. You can prevent changes by
using a transaction or the locking API.

2.3 Nesting of Transactions Is Fraught

TDB has alternated between allowing nested transactions and not allowing
them. Various paths in the Samba codebase assume that transactions will nest,
and in a sense they can: the operation is only committed to disk when the outer
transaction is committed. There are two problems, however:

1. Canceling the inner transaction will cause the outer transaction commit to
fail, and will not undo any operations since the inner transaction began.
This problem is soluble with some additional internal code.

2. An inner transaction commit can be cancelled by the outer transaction.
This is desirable in the way which Samba's database initialization code
uses transactions, but could be a surprise to any users expecting a suc-
cessful transaction commit to expose changes to others.

The current solution is to specify the behavior at tdb_open(), with the default
currently that nested transactions are allowed. This �ag can also be changed at
runtime.

2.3.1 Proposed Solution

Given the usage patterns, it seems that the �least-surprise� behavior of disal-
lowing nested transactions should become the default. Additionally, it seems
the outer transaction is the only code which knows whether inner transactions
should be allowed, so a �ag to indicate this could be added to tdb_transaction_start.
However, this behavior can be simulated with a wrapper which uses tdb_add_�ags()
and tdb_remove_�ags(), so the API should not be expanded for this relatively-
obscure case.

3



2.4 Incorrect Hash Function is Not Detected

tdb_open_ex() allows the calling code to specify a di�erent hash function to
use, but does not check that all other processes accessing this tdb are using the
same hash function. The result is that records are missing from tdb_fetch().

2.4.1 Proposed Solution

The header should contain an example hash result (eg. the hash of 0xdeadbeef),
and tdb_open_ex() should check that the given hash function produces the
same answer, or fail the tdb_open call.

2.5 tdb_set_max_dead/TDB_VOLATILE Expose Imple-
mentation

In response to scalability issues with the free list (3.5) two API workarounds have
been incorporated in TDB: tdb_set_max_dead() and the TDB_VOLATILE
�ag to tdb_open. The latter actually calls the former with an argument of �5�.

This code allows deleted records to accumulate without putting them in the
free list. On delete we iterate through each chain and free them in a batch
if there are more than max_dead entries. These are never otherwise recycled
except as a side-e�ect of a tdb_repack.

2.5.1 Proposed Solution

With the scalability problems of the freelist solved, this API can be removed.
The TDB_VOLATILE �ag may still be useful as a hint that store and delete
of records will be at least as common as fetch in order to allow some internal
tuning, but initially will become a no-op.

2.6 TDB Files Cannot Be Opened Multiple Times In The
Same Process

No process can open the same TDB twice; we check and disallow it. This is
an unfortunate side-e�ect of fcntl locks, which operate on a per-�le rather than
per-�le-descriptor basis, and do not nest. Thus, closing any �le descriptor on a
�le clears all the locks obtained by this process, even if they were placed using
a di�erent �le descriptor!

Note that even if this were solved, deadlock could occur if operations were
nested: this is a more manageable programming error in most cases.

2.6.1 Proposed Solution

We could lobby POSIX to �x the perverse rules, or at least lobby Linux to violate
them so that the most common implementation does not have this restriction.
This would be a generally good idea for other fcntl lock users.

4



Samba uses a wrapper which hands out the same tdb_context to multiple
callers if this happens, and does simple reference counting. We should do this
inside the tdb library, which already emulates lock nesting internally; it would
need to recognize when deadlock occurs within a single process. This would
create a new failure mode for tdb operations (while we currently handle locking
failures, they are impossible in normal use and a process encountering them can
do little but give up).

I do not see bene�t in an additional tdb_open �ag to indicate whether re-
opening is allowed, as though there may be some bene�t to adding a call to
detect when a tdb_context is shared, to allow other to create such an API.

2.7 TDB API Is Not POSIX Thread-safe

The TDB API uses an error code which can be queried after an operation to
determine what went wrong. This programming model does not work with
threads, unless speci�c additional guarantees are given by the implementation.
In addition, even otherwise-independent threads cannot open the same TDB (as
in 2.6).

2.7.1 Proposed Solution

Reachitecting the API to include a tdb_errcode pointer would be a great deal
of churn; we are better to guarantee that the tdb_errcode is per-thread so the
current programming model can be maintained.

This requires dynamic per-thread allocations, which is awkward with POSIX
threads (pthread_key_create space is limited and we cannot simply allocate a
key for every TDB).

Internal locking is required to make sure that fcntl locks do not overlap
between threads, and also that the global list of tdbs is maintained.

The aim is that building tdb with -DTDB_PTHREAD will result in a
pthread-safe version of the library, and otherwise no overhead will exist. Al-
ternatively, a hooking mechanism similar to that proposed for 2.8.1 could be
used to enable pthread locking at runtime.

2.8 *_nonblock Functions And *_mark Functions Expose
Implementation

CTDB1 wishes to operate on TDB in a non-blocking manner. This is currently
done as follows:

1. Call the _nonblock variant of an API function (eg. tdb_lockall_nonblock).
If this fails:

2. Fork a child process, and wait for it to call the normal variant (eg. tdb_lockall).

1Clustered TDB, see http://ctdb.samba.org

5



3. If the child succeeds, call the _mark variant to indicate we already have
the locks (eg. tdb_lockall_mark).

4. Upon completion, tell the child to release the locks (eg. tdb_unlockall).

5. Indicate to tdb that it should consider the locks removed (eg. tdb_unlockall_mark).

There are several issues with this approach. Firstly, adding two new variants
of each function clutters the API for an obscure use, and so not all functions
have three variants. Secondly, it assumes that all paths of the functions ask for
the same locks, otherwise the parent process will have to get a lock which the
child doesn't have under some circumstances. I don't believe this is currently
the case, but it constrains the implementation.

2.8.1 Proposed Solution

Implement a hook for locking methods, so that the caller can control the calls to
create and remove fcntl locks. In this scenario, ctdbd would operate as follows:

1. Call the normal API function, eg tdb_lockall().

2. When the lock callback comes in, check if the child has the lock. Initially,
this is always false. If so, return 0. Otherwise, try to obtain it in non-
blocking mode. If that fails, return EWOULDBLOCK.

3. Release locks in the unlock callback as normal.

4. If tdb_lockall() fails, see if we recorded a lock failure; if so, call the child
to repeat the operation.

5. The child records what locks it obtains, and returns that information to
the parent.

6. When the child has succeeded, goto 1.

This is �exible enough to handle any potential locking scenario, even when lock
requirements change. It can be optimized so that the parent does not release
locks, just tells the child which locks it doesn't need to obtain.

It also keeps the complexity out of the API, and in ctdbd where it is needed.

2.9 tdb_chainlock Functions Expose Implementation

tdb_chainlock locks some number of records, including the record indicated by
the given key. This gave atomicity guarantees; no-one can start a transaction,
alter, read or delete that key while the lock is held.

It also makes the same guarantee for any other key in the chain, which is an
internal implementation detail and potentially a cause for deadlock.

6



2.9.1 Proposed Solution

None. It would be nice to have an explicit single entry lock which e�ected no
other keys. Unfortunately, this won't work for an entry which doesn't exist.
Thus while chainlock may be implemented more e�ciently for the existing case,
it will still have overlap issues with the non-existing case. So it is best to keep
the current (lack of) guarantee about which records will be e�ected to avoid
constraining our implementation.

2.10 Signal Handling is Not Race-Free

The tdb_setalarm_sigptr() call allows the caller's signal handler to indicate
that the tdb locking code should return with a failure, rather than trying again
when a signal is received (and errno == EAGAIN). This is usually used to
implement timeouts.

Unfortunately, this does not work in the case where the signal is received
before the tdb code enters the fcntl() call to place the lock: the code will sleep
within the fcntl() code, unaware that the signal wants it to exit. In the case of
long timeouts, this does not happen in practice.

2.10.1 Proposed Solution

The locking hooks proposed in2.8.1 would allow the user to decide on whether
to fail the lock acquisition on a signal. This allows the caller to choose their
own compromise: they could narrow the race by checking immediately before
the fcntl call.2

2.11 The API Uses Gratuitous Typedefs, Capitals

typedefs are useful for providing source compatibility when types can di�er
across implementations, or arguably in the case of function pointer de�nitions
which are hard for humans to parse. Otherwise it is simply obfuscation and
pollutes the namespace.

Capitalization is usually reserved for compile-time constants and macros.

TDB_CONTEXT There is no reason to use this over 'struct tdb_context';
the de�nition isn't visible to the API user anyway.

TDB_DATA There is no reason to use this over struct TDB_DATA; the
struct needs to be understood by the API user.

struct TDB_DATA This would normally be called 'struct tdb_data'.

enum TDB_ERROR Similarly, this would normally be enum tdb_error.

2It may be possible to make this race-free in some implementations by having the signal
handler alter the struct �ock to make it invalid. This will cause the fcntl() lock call to fail
with EINVAL if the signal occurs before the kernel is entered, otherwise EAGAIN.

7



2.11.1 Proposed Solution

None. Introducing lower case variants would please pedants like myself, but if
it were done the existing ones should be kept. There is little point forcing a
purely cosmetic change upon tdb users.

2.12 tdb_log_func Doesn't Take The Private Pointer

For API compatibility reasons, the logging function needs to call tdb_get_logging_private()
to retrieve the pointer registered by the tdb_open_ex for logging.

2.12.1 Proposed Solution

It should simply take an extra argument, since we are prepared to break the
API/ABI.

2.13 Various Callback Functions Are Not Typesafe

The callback functions in tdb_set_logging_function (after 2.12 is resolved),
tdb_parse_record, tdb_traverse, tdb_traverse_read and tdb_check all take
void * and must internally convert it to the argument type they were expecting.

If this type changes, the compiler will not produce warnings on the callers,
since it only sees void *.

2.13.1 Proposed Solution

With careful use of macros, we can create callback functions which give a warn-
ing when used on gcc and the types of the callback and its private argument
di�er. Unsupported compilers will not give a warning, which is no worse than
now. In addition, the callbacks become clearer, as they need not use void * for
their parameter.

See CCAN's typesafe_cb module at http://ccan.ozlabs.org/info/typesafe_cb.html

2.14 TDB_CLEAR_IF_FIRST Must Be Speci�ed On
All Opens, tdb_reopen_all Problematic

The TDB_CLEAR_IF_FIRST �ag to tdb_open indicates that the TDB �le
should be cleared if the caller discovers it is the only process with the TDB open.
However, if any caller does not specify TDB_CLEAR_IF_FIRST it will not
be detected, so will have the TDB erased underneath them (usually resulting in
a crash).

There is a similar issue on fork(); if the parent exits (or otherwise closes
the tdb) before the child calls tdb_reopen_all() to establish the lock used to
indicate the TDB is opened by someone, a TDB_CLEAR_IF_FIRST opener
at that moment will believe it alone has opened the TDB and will erase it.

8



2.14.1 Proposed Solution

Remove TDB_CLEAR_IF_FIRST. Other workarounds are possible, but see
3.1.

2.15 Extending The Header Is Di�cult

We have reserved (zeroed) words in the TDB header, which can be used for
future features. If the future features are compulsory, the version number must
be updated to prevent old code from accessing the database. But if the future
feature is optional, we have no way of telling if older code is accessing the
database or not.

2.15.1 Proposed Solution

The header should contain a �format variant� value (64-bit). This is divided
into two 32-bit parts:

1. The lower part re�ects the format variant understood by code accessing
the database.

2. The upper part re�ects the format variant you must understand to write
to the database (otherwise you can only open for reading).

The latter �eld can only be written at creation time, the former should be
written under the OPEN_LOCK when opening the database for writing, if the
variant of the code is lower than the current lowest variant.

This should allow backwards-compatible features to be added, and detection
if older code (which doesn't understand the feature) writes to the database.

2.16 Record Headers Are Not Expandible

If we later want to add (say) checksums on keys and data, it would require
another format change, which we'd like to avoid.

2.16.1 Proposed Solution

We often have extra padding at the tail of a record. If we ensure that the �rst
byte (if any) of this padding is zero, we will have a way for future changes to
detect code which doesn't understand a new format: the new code would write
(say) a 1 at the tail, and thus if there is no tail or the �rst byte is 0, we would
know the extension is not present on that record.

3 Performance And Scalability Issues

3.1 TDB_CLEAR_IF_FIRST Imposes Performance Penalty

When TDB_CLEAR_IF_FIRST is speci�ed, a 1-byte read lock is placed at
o�set 4 (aka. the ACTIVE_LOCK). While these locks never con�ict in normal

9



tdb usage, they do add substantial overhead for most fcntl lock implementations
when the kernel scans to detect if a lock con�ict exists. This is often a single
linked list, making the time to acquire and release a fcntl lock O(N) where N
is the number of processes with the TDB open, not the number actually doing
work.

In a Samba server it is common to have huge numbers of clients sitting idle,
and thus they have weaned themselves o� the TDB_CLEAR_IF_FIRST �ag.3

3.1.1 Proposed Solution

Remove the �ag. It was a neat idea, but even trivial servers tend to know when
they are initializing for the �rst time and can simply unlink the old tdb at that
point.

3.2 TDB Files Have a 4G Limit

This seems to be becoming an issue (so much for �trivial�!), particularly for ldb.

3.2.1 Proposed Solution

A new, incompatible TDB format which uses 64 bit o�sets internally rather
than 32 bit as now. For simplicity of endian conversion (which TDB does on
the �y if required), all values will be 64 bit on disk. In practice, some upper
bits may be used for other purposes, but at least 56 bits will be available for
�le o�sets.

tdb_open() will automatically detect the old version, and even create them
if TDB_VERSION6 is speci�ed to tdb_open.

32 bit processes will still be able to access TDBs larger than 4G (assuming
that their o�_t allows them to seek to 64 bits), they will gracefully fall back as
they fail to mmap. This can happen already with large TDBs.

Old versions of tdb will fail to open the new TDB �les (since 28 August
2009, commit 398d0c29290: prior to that any unrecognized �le format would be
erased and initialized as a fresh tdb!)

3.3 TDB Records Have a 4G Limit

This has not been a reported problem, and the API uses size_t which can be
64 bit on 64 bit platforms. However, other limits may have made such an issue
moot.

3.3.1 Proposed Solution

Record sizes will be 64 bit, with an error returned on 32 bit platforms which try
to access such records (the current implementation would return TDB_ERR_OOM

3There is a �ag to tdb_reopen_all() which is used for this optimization: if the parent pro-
cess will outlive the child, the child does not need the ACTIVE_LOCK. This is a workaround
for this very performance issue.

10



in a similar case). It seems unlikely that 32 bit keys will be a limitation, so the
implementation may not support this (see 3.7).

3.4 Hash Size Is Determined At TDB Creation Time

TDB contains a number of hash chains in the header; the number is speci�ed at
creation time, and defaults to 131. This is such a bottleneck on large databases
(as each hash chain gets quite long), that LDB uses 10,000 for this hash. In
general it is impossible to know what the 'right' answer is at database creation
time.

3.4.1 Proposed Solution

After comprehensive performance testing on various scalable hash variants4, it
became clear that it is hard to beat a straight linear hash table which doubles in
size when it reaches saturation. There are three details which become important:

1. On encountering a full bucket, we use the next bucket.

2. Extra hash bits are stored with the o�set, to reduce comparisons.

3. A marker entry is used on deleting an entry.

The doubling of the table must be done under a transaction; we will not reduce
it on deletion, so it will be an unusual case. It will either be placed at the head
(other entries will be moved out the way so we can expand). We could have a
pointer in the header to the current hashtable location, but that pointer would
have to be read frequently to check for hashtable moves.

The locking for this is slightly more complex than the chained case; we
currently have one lock per bucket, and that means we would need to expand
the lock if we over�ow to the next bucket. The frequency of such collisions will
e�ect our locking heuristics: we can always lock more buckets than we need.

One possible optimization is to only re-check the hash size on an insert or a
lookup miss. Unfortunately, altering the hash table introduces serious locking
complications: the entire hash table needs to be locked to enlarge the hash
table, and others might be holding locks. Particularly insidious are insertions
done under tdb_chainlock.

Thus an expanding layered hash will be used: an array of hash groups,
with each hash group exploding into pointers to lower hash groups once it �lls,
turning into a hash tree. This has implications for locking: we must lock the
entire group in case we need to expand it, yet we don't know how deep the tree
is at that point.

Note that bits from the hash table entries should be stolen to hold more
hash bits to reduce the penalty of collisions. We can use the otherwise-unused

4http://rusty.ozlabs.org/?p=89 and http://rusty.ozlabs.org/?p=94 This was annoying be-
cause I was previously convinced that an expanding tree of hashes would be very close to
optimal.

11



lower 3 bits. If we limit the size of the database to 64 exabytes, we can use the
top 8 bits of the hash entry as well. These 11 bits would reduce false positives
down to 1 in 2000 which is more than we need: we can use one of the bits to
indicate that the extra hash bits are valid. This means we can choose not to
re-hash all entries when we expand a hash group; simply use the next bits we
need and mark them invalid.

3.5 TDB Freelist Is Highly Contended

TDB uses a single linked list for the free list. Allocation occurs as follows, using
heuristics which have evolved over time:

1. Get the free list lock for this whole operation.

2. Multiply length by 1.25, so we always over-allocate by 25%.

3. Set the slack multiplier to 1.

4. Examine the current freelist entry: if it is > length but < the current best
case, remember it as the best case.

5. Multiply the slack multiplier by 1.05.

6. If our best �t so far is less than length * slack multiplier, return it. The
slack will be turned into a new free record if it's large enough.

7. Otherwise, go onto the next freelist entry.

Deleting a record occurs as follows:

1. Lock the hash chain for this whole operation.

2. Walk the chain to �nd the record, keeping the prev pointer o�set.

3. If max_dead is non-zero:

(a) Walk the hash chain again and count the dead records.

(b) If it's more than max_dead, bulk free all the dead ones (similar to
steps 4 and below, but the lock is only obtained once).

(c) Simply mark this record as dead and return.

4. Get the free list lock for the remainder of this operation.

5. Examine the following block to see if it is free; if so, enlarge the current
block and remove that block from the free list. This was disabled, as
removal from the free list was O(entries-in-free-list).

6. Examine the preceeding block to see if it is free: for this reason, each
block has a 32-bit tailer which indicates its length. If it is free, expand it
to cover our new block and return.

12



7. Otherwise, prepend ourselves to the free list.

Disabling right-merging (step 5) causes fragmentation; the other heuristics proved
insu�cient to address this, so the �nal answer to this was that when we expand
the TDB �le inside a transaction commit, we repack the entire tdb.

The single list lock limits our allocation rate; due to the other issues this is
not currently seen as a bottleneck.

3.5.1 Proposed Solution

The �rst step is to remove all the current heuristics, as they obviously interact,
then examine them once the lock contention is addressed.

The free list must be split to reduce contention. Assuming perfect free
merging, we can at most have 1 free list entry for each entry. This implies that
the number of free lists is related to the size of the hash table, but as it is rare
to walk a large number of free list entries we can use far fewer, say 1/32 of the
number of hash buckets.

It seems tempting to try to reuse the hash implementation which we use for
records here, but we have two ways of searching for free entries: for allocation
we search by size (and possibly zone) which produces too many clashes for our
hash table to handle well, and for coalescing we search by address. Thus an
array of doubly-linked free lists seems preferable.

There are various bene�ts in using per-size free lists (see 3.6) but it's not
clear this would reduce contention in the common case where all processes are
allocating/freeing the same size. Thus we almost certainly need to divide in
other ways: the most obvious is to divide the �le into zones, and using a free
list (or set of free lists) for each. This approximates address ordering.

Note that this means we need to split the free lists when we expand the �le;
this is probably acceptable when we double the hash table size, since that is
such an expensive operation already. In the case of increasing the �le size, there
is an optimization we can use: if we use M in the formula above as the �le size
rounded up to the next power of 2, we only need reshu�e free lists when the
�le size crosses a power of 2 boundary, and reshu�ing the free lists is trivial:
we simply merge every consecutive pair of free lists.

The basic algorithm is as follows. Freeing is simple:

1. Identify the correct zone.

2. Lock the corresponding list.

3. Re-check the zone (we didn't have a lock, sizes could have changed): relock
if necessary.

4. Place the freed entry in the list for that zone.

Allocation is a little more complicated, as we perform delayed coalescing at this
point:

13



1. Pick a zone either the zone we last freed into, or based on a �random�
number.

2. Lock the corresponding list.

3. Re-check the zone: relock if necessary.

4. If the top entry is -large enough, remove it from the list and return it.

5. Otherwise, coalesce entries in the list.If there was no entry large enough,
unlock the list and try the next zone.

6. If no zone satis�es, expand the �le.

This optimizes rapid insert/delete of free list entries by not coalescing them all
the time.. First-�t address ordering ordering seems to be fairly good for keeping
fragmentation low (see 3.6). Note that address ordering does not need a tailer
to coalesce, though if we needed one we could have one cheaply: see 3.7.

I anticipate that the number of entries in each free zone would be small, but
it might be worth using one free entry to hold pointers to the others for cache
e�ciency.

If we want to avoid locking complexity (enlarging the free lists when we
enlarge the �le) we could place the array of free lists at the beginning of each
zone. This means existing array lists never move, but means that a record cannot
be larger than a zone. That in turn implies that zones should be variable sized
(say, power of 2), which makes the question �what zone is this record in?� much
harder (and �pick a random zone�, but that's less common). It could be done
with as few as 4 bits from the record header.5

3.6 TDB Becomes Fragmented

Much of this is a result of allocation strategy6 and deliberate hobbling of coa-
lescing; internal fragmentation (aka overallocation) is deliberately set at 25%,
and external fragmentation is only cured by the decision to repack the entire db
when a transaction commit needs to enlarge the �le.

3.6.1 Proposed Solution

The 25% overhead on allocation works in practice for ldb because indexes tend
to expand by one record at a time. This internal fragmentation can be resolved
by having an �expanded� bit in the header to note entries that have previously
expanded, and allocating more space for them.

5Using 216+N∗3means 0 gives a minimal 65536-byte zone, 15 gives the maximal 261 byte
zone. Zones range in factor of 8 steps.

6The Memory Fragmentation Problem: Solved? Johnstone & Wilson 1995
ftp://ftp.cs.utexas.edu/pub/garbage/malloc/ismm98.ps

14



There are is a spectrum of possible solutions for external fragmentation: one
is to use a fragmentation-avoiding allocation strategy such as best-�t address-
order allocator. The other end of the spectrum would be to use a bump allocator
(very fast and simple) and simply repack the �le when we reach the end.

There are three problems with e�cient fragmentation-avoiding allocators:
they are non-trivial, they tend to use a single free list for each size, and there's
no evidence that tdb allocation patterns will match those recorded for general
allocators (though it seems likely).

Thus we don't spend too much e�ort on external fragmentation; we will be
no worse than the current code if we need to repack on occasion. More e�ort is
spent on reducing freelist contention, and reducing overhead.

3.7 Records Incur A 28-Byte Overhead

Each TDB record has a header as follows:

struct tdb_record {

tdb_off_t next; /* offset of the next record in the list */

tdb_len_t rec_len; /* total byte length of record */

tdb_len_t key_len; /* byte length of key */

tdb_len_t data_len; /* byte length of data */

uint32_t full_hash; /* the full 32 bit hash of the key */

uint32_t magic; /* try to catch errors */

/* the following union is implied:

union {

char record[rec_len];

struct {

char key[key_len];

char data[data_len];

}

uint32_t totalsize; (tailer)

}

*/

};

Naively, this would double to a 56-byte overhead on a 64 bit implementation.

3.7.1 Proposed Solution

We can use various techniques to reduce this for an allocated block:

1. The 'next' pointer is not required, as we are using a �at hash table.

2. 'rec_len' can instead be expressed as an addition to key_len and data_len
(it accounts for wasted or overallocated length in the record). Since the
record length is always a multiple of 8, we can conveniently �t it in 32 bits
(representing up to 35 bits).

15



3. 'key_len' and 'data_len' can be reduced. I'm unwilling to restrict 'data_len'
to 32 bits, but instead we can combine the two into one 64-bit �eld and
using a 5 bit value which indicates at what bit to divide the two. Keys
are unlikely to scale as fast as data, so I'm assuming a maximum key size
of 32 bits.

4. 'full_hash' is used to avoid a memcmp on the �miss� case, but this is
diminishing returns after a handful of bits (at 10 bits, it reduces 99.9% of
false memcmp). As an aside, as the lower bits are already incorporated in
the hash table resolution, the upper bits should be used here. Note that
it's not clear that these bits will be a win, given the extra bits in the hash
table itself (see 3.4.1).

5. 'magic' does not need to be enlarged: it currently re�ects one of 5 values
(used, free, dead, recovery, and unused_recovery). It is useful for quick
sanity checking however, and should not be eliminated.

6. 'tailer' is only used to coalesce free blocks (so a block to the right can �nd
the header to check if this block is free). This can be replaced by a single
'free' bit in the header of the following block (and the tailer only exists
in free blocks).7 The current proposed coalescing algorithm doesn't need
this, however.

This produces a 16 byte used header like this:

struct tdb_used_record {

uint32_t magic : 16,

prev_is_free: 1,

key_data_divide: 5,

top_hash: 10;

uint32_t extra_octets;

uint64_t key_and_data_len;

};

And a free record like this:

struct tdb_free_record {

uint32_t free_magic;

uint64_t total_length;

uint64_t prev, next;

...

uint64_t tailer;

};

We might want to take some bits from the used record's top_hash (and the free
record which has 32 bits of padding to spare anyway) if we use variable sized
zones. See 3.5.1.

7This technique from Thomas Standish. Data Structure Techniques. Addison-Wesley,
Reading, Massachusetts, 1980.

16



3.8 Transaction Commit Requires 4 fdatasync

The current transaction algorithm is:

1. write_recovery_data();

2. sync();

3. write_recovery_header();

4. sync();

5. overwrite_with_new_data();

6. sync();

7. remove_recovery_header();

8. sync();

On current ext3, each sync �ushes all data to disk, so the next 3 syncs are
relatively expensive. But this could become a performance bottleneck on other
�lesystems such as ext4.

3.8.1 Proposed Solution

Neil Brown points out that this is overzealous, and only one sync is needed:

1. Bundle the recovery data, a transaction counter and a strong checksum of
the new data.

2. Strong checksum that whole bundle.

3. Store the bundle in the database.

4. Overwrite the oldest of the two recovery pointers in the header (identi�ed
using the transaction counter) with the o�set of this bundle.

5. sync.

6. Write the new data to the �le.

Checking for recovery means identifying the latest bundle with a valid checksum
and using the new data checksum to ensure that it has been applied. This is
more expensive than the current check, but need only be done at open. For
running databases, a separate header �eld can be used to indicate a transaction
in progress; we need only check for recovery if this is set.

17



3.9 TDB Does Not Have Snapshot Support

3.9.1 Proposed Solution

None. At some point you say �use a real database�.
But as a thought experiment, if we implemented transactions to only over-

write free entries (this is tricky: there must not be a header in each entry which
indicates whether it is free, but use of presence in metadata elsewhere), and
a pointer to the hash table, we could create an entirely new commit without
destroying existing data. Then it would be easy to implement snapshots in a
similar way.

This would not allow arbitrary changes to the database, such as tdb_repack
does, and would require more space (since we have to preserve the current and
future entries at once). If we used hash trees rather than one big hash table, we
might only have to rewrite some sections of the hash, too.

We could then implement snapshots using a similar method, using multiple
di�erent hash tables/free tables.

3.10 Transactions Cannot Operate in Parallel

This would be useless for ldb, as it hits the index records with just about every
update. It would add signi�cant complexity in resolving clashes, and cause
the all transaction callers to write their code to loop in the case where the
transactions spuriously failed.

3.10.1 Proposed Solution

We could solve a small part of the problem by providing read-only transactions.
These would allow one write transaction to begin, but it could not commit until
all r/o transactions are done. This would require a new RO_TRANSACTION_LOCK,
which would be upgraded on commit.

3.11 Default Hash Function Is Suboptimal

The Knuth-inspired multiplicative hash used by tdb is fairly slow (especially if
we expand it to 64 bits), and works best when the hash bucket size is a prime
number (which also means a slow modulus). In addition, it is highly predictable
which could potentially lead to a Denial of Service attack in some TDB uses.

3.11.1 Proposed Solution

The Jenkins lookup3 hash8 is a fast and superbly-mixing hash. It's used by the
Linux kernel and almost everything else. This has the particular properties that
it takes an initial seed, and produces two 32 bit hash numbers, which we can
combine into a 64-bit hash.

8http://burtleburtle.net/bob/c/lookup3.c

18



The seed should be created at tdb-creation time from some random source,
and placed in the header. This is far from foolproof, but adds a little bit of
protection against hash bombing.

3.12 Reliable Traversal Adds Complexity

We lock a record during traversal iteration, and try to grab that lock in the
delete code. If that grab on delete fails, we simply mark it deleted and continue
onwards; traversal checks for this condition and does the delete when it moves
o� the record.

If traversal terminates, the dead record may be left inde�nitely.

3.12.1 Proposed Solution

Remove reliability guarantees; see 2.2.1.

3.13 Fcntl Locking Adds Overhead

Placing a fcntl lock means a system call, as does removing one. This is ac-
tually one reason why transactions can be faster (everything is locked once at
transaction start). In the uncontended case, this overhead can theoretically be
eliminated.

3.13.1 Proposed Solution

None.
We tried this before with spinlock support, in the early days of TDB, and it

didn't make much di�erence except in manufactured benchmarks.
We could use spinlocks (with futex kernel support under Linux), but it means

that we lose automatic cleanup when a process dies with a lock. There is a
method of auto-cleanup under Linux, but it's not supported by other operating
systems. We could reintroduce a clear-if-�rst-style lock and sweep for dead
futexes on open, but that wouldn't help the normal case of one concurrent
opener dying. Increasingly elaborate repair schemes could be considered, but
they require an ABI change (everyone must use them) anyway, so there's no
need to do this at the same time as everything else.

3.14 Some Transactions Don't Require Durability

Volker points out that gencache uses a CLEAR_IF_FIRST tdb for normal
(fast) usage, and occasionally empties the results into a transactional TDB.
This kind of usage prioritizes performance over durability: as long as we are
consistent, data can be lost.

This would be more neatly implemented inside tdb: a �soft� transaction
commit (ie. syncless) which meant that data may be reverted on a crash.

19



3.14.1 Proposed Solution

None.
Unfortunately any transaction scheme which overwrites old data requires a

sync before that overwrite to avoid the possibility of corruption.
It seems possible to use a scheme similar to that described in 3.9,where

transactions are committed without overwriting existing data, and an array of
top-level pointers were available in the header. If the transaction is �soft� then
we would not need a sync at all: existing processes would pick up the new hash
table and free list and work with that.

At some later point, a sync would allow recovery of the old data into the free
lists (perhaps when the array of top-level pointers �lled). On crash, tdb_open()
would examine the array of top levels, and apply the transactions until it en-
countered an invalid checksum.

20


