]> git.ozlabs.org Git - ppp.git/blob - common/zlib.c
2c4834bce42689246490924b129d8fa1a41cc91f
[ppp.git] / common / zlib.c
1 /*
2  * This file is derived from various .h and .c files from the zlib-1.0.4
3  * distribution by Jean-loup Gailly and Mark Adler, with some additions
4  * by Paul Mackerras to aid in implementing Deflate compression and
5  * decompression for PPP packets.  See zlib.h for conditions of
6  * distribution and use.
7  *
8  * Changes that have been made include:
9  * - added Z_PACKET_FLUSH (see zlib.h for details)
10  * - added inflateIncomp and deflateOutputPending
11  * - allow strm->next_out to be NULL, meaning discard the output
12  *
13  * $Id: zlib.c,v 1.11 1998/09/13 23:37:12 paulus Exp $
14  */
15
16 /* 
17  *  ==FILEVERSION 971210==
18  *
19  * This marker is used by the Linux installation script to determine
20  * whether an up-to-date version of this file is already installed.
21  */
22
23 #define NO_DUMMY_DECL
24 #define NO_ZCFUNCS
25 #define MY_ZCALLOC
26
27 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
28 #define inflate inflate_ppp     /* FreeBSD already has an inflate :-( */
29 #endif
30
31
32 /* +++ zutil.h */
33 /* zutil.h -- internal interface and configuration of the compression library
34  * Copyright (C) 1995-1996 Jean-loup Gailly.
35  * For conditions of distribution and use, see copyright notice in zlib.h
36  */
37
38 /* WARNING: this file should *not* be used by applications. It is
39    part of the implementation of the compression library and is
40    subject to change. Applications should only use zlib.h.
41  */
42
43 /* From: zutil.h,v 1.16 1996/07/24 13:41:13 me Exp $ */
44
45 #ifndef _Z_UTIL_H
46 #define _Z_UTIL_H
47
48 #include "zlib.h"
49
50 #if defined(KERNEL) || defined(_KERNEL)
51 /* Assume this is a *BSD or SVR4 kernel */
52 #include <sys/types.h>
53 #include <sys/time.h>
54 #include <sys/systm.h>
55 #undef u
56 #  define HAVE_MEMCPY
57 #  define memcpy(d, s, n)       bcopy((s), (d), (n))
58 #  define memset(d, v, n)       bzero((d), (n))
59 #  define memcmp                bcmp
60
61 #else
62 #if defined(__KERNEL__)
63 /* Assume this is a Linux kernel */
64 #include <linux/string.h>
65 #define HAVE_MEMCPY
66
67 #else /* not kernel */
68
69 #if defined(MSDOS)||defined(VMS)||defined(CRAY)||defined(WIN32)||defined(RISCOS)
70 #   include <stddef.h>
71 #   include <errno.h>
72 #else
73     extern int errno;
74 #endif
75 #ifdef STDC
76 #  include <string.h>
77 #  include <stdlib.h>
78 #endif
79 #endif /* __KERNEL__ */
80 #endif /* _KERNEL || KERNEL */
81
82 #ifndef local
83 #  define local static
84 #endif
85 /* compile with -Dlocal if your debugger can't find static symbols */
86
87 typedef unsigned char  uch;
88 typedef uch FAR uchf;
89 typedef unsigned short ush;
90 typedef ush FAR ushf;
91 typedef unsigned long  ulg;
92
93 extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
94 /* (size given to avoid silly warnings with Visual C++) */
95
96 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
97
98 #define ERR_RETURN(strm,err) \
99   return (strm->msg = (char*)ERR_MSG(err), (err))
100 /* To be used only when the state is known to be valid */
101
102         /* common constants */
103
104 #ifndef DEF_WBITS
105 #  define DEF_WBITS MAX_WBITS
106 #endif
107 /* default windowBits for decompression. MAX_WBITS is for compression only */
108
109 #if MAX_MEM_LEVEL >= 8
110 #  define DEF_MEM_LEVEL 8
111 #else
112 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
113 #endif
114 /* default memLevel */
115
116 #define STORED_BLOCK 0
117 #define STATIC_TREES 1
118 #define DYN_TREES    2
119 /* The three kinds of block type */
120
121 #define MIN_MATCH  3
122 #define MAX_MATCH  258
123 /* The minimum and maximum match lengths */
124
125 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
126
127         /* target dependencies */
128
129 #ifdef MSDOS
130 #  define OS_CODE  0x00
131 #  ifdef __TURBOC__
132 #    include <alloc.h>
133 #  else /* MSC or DJGPP */
134 #    include <malloc.h>
135 #  endif
136 #endif
137
138 #ifdef OS2
139 #  define OS_CODE  0x06
140 #endif
141
142 #ifdef WIN32 /* Window 95 & Windows NT */
143 #  define OS_CODE  0x0b
144 #endif
145
146 #if defined(VAXC) || defined(VMS)
147 #  define OS_CODE  0x02
148 #  define FOPEN(name, mode) \
149      fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
150 #endif
151
152 #ifdef AMIGA
153 #  define OS_CODE  0x01
154 #endif
155
156 #if defined(ATARI) || defined(atarist)
157 #  define OS_CODE  0x05
158 #endif
159
160 #ifdef MACOS
161 #  define OS_CODE  0x07
162 #endif
163
164 #ifdef __50SERIES /* Prime/PRIMOS */
165 #  define OS_CODE  0x0F
166 #endif
167
168 #ifdef TOPS20
169 #  define OS_CODE  0x0a
170 #endif
171
172 #if defined(_BEOS_) || defined(RISCOS)
173 #  define fdopen(fd,mode) NULL /* No fdopen() */
174 #endif
175
176         /* Common defaults */
177
178 #ifndef OS_CODE
179 #  define OS_CODE  0x03  /* assume Unix */
180 #endif
181
182 #ifndef FOPEN
183 #  define FOPEN(name, mode) fopen((name), (mode))
184 #endif
185
186          /* functions */
187
188 #ifdef HAVE_STRERROR
189    extern char *strerror OF((int));
190 #  define zstrerror(errnum) strerror(errnum)
191 #else
192 #  define zstrerror(errnum) ""
193 #endif
194
195 #if defined(pyr)
196 #  define NO_MEMCPY
197 #endif
198 #if (defined(M_I86SM) || defined(M_I86MM)) && !defined(_MSC_VER)
199  /* Use our own functions for small and medium model with MSC <= 5.0.
200   * You may have to use the same strategy for Borland C (untested).
201   */
202 #  define NO_MEMCPY
203 #endif
204 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
205 #  define HAVE_MEMCPY
206 #endif
207 #ifdef HAVE_MEMCPY
208 #  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
209 #    define zmemcpy _fmemcpy
210 #    define zmemcmp _fmemcmp
211 #    define zmemzero(dest, len) _fmemset(dest, 0, len)
212 #  else
213 #    define zmemcpy memcpy
214 #    define zmemcmp memcmp
215 #    define zmemzero(dest, len) memset(dest, 0, len)
216 #  endif
217 #else
218    extern void zmemcpy  OF((Bytef* dest, Bytef* source, uInt len));
219    extern int  zmemcmp  OF((Bytef* s1,   Bytef* s2, uInt len));
220    extern void zmemzero OF((Bytef* dest, uInt len));
221 #endif
222
223 /* Diagnostic functions */
224 #ifdef DEBUG_ZLIB
225 #  include <stdio.h>
226 #  ifndef verbose
227 #    define verbose 0
228 #  endif
229    extern void z_error    OF((char *m));
230 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
231 #  define Trace(x) fprintf x
232 #  define Tracev(x) {if (verbose) fprintf x ;}
233 #  define Tracevv(x) {if (verbose>1) fprintf x ;}
234 #  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
235 #  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
236 #else
237 #  define Assert(cond,msg)
238 #  define Trace(x)
239 #  define Tracev(x)
240 #  define Tracevv(x)
241 #  define Tracec(c,x)
242 #  define Tracecv(c,x)
243 #endif
244
245
246 typedef uLong (*check_func) OF((uLong check, const Bytef *buf, uInt len));
247
248 voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size));
249 void   zcfree  OF((voidpf opaque, voidpf ptr));
250
251 #define ZALLOC(strm, items, size) \
252            (*((strm)->zalloc))((strm)->opaque, (items), (size))
253 #define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
254 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
255
256 #endif /* _Z_UTIL_H */
257 /* --- zutil.h */
258
259 /* +++ deflate.h */
260 /* deflate.h -- internal compression state
261  * Copyright (C) 1995-1996 Jean-loup Gailly
262  * For conditions of distribution and use, see copyright notice in zlib.h 
263  */
264
265 /* WARNING: this file should *not* be used by applications. It is
266    part of the implementation of the compression library and is
267    subject to change. Applications should only use zlib.h.
268  */
269
270 /* From: deflate.h,v 1.10 1996/07/02 12:41:00 me Exp $ */
271
272 #ifndef _DEFLATE_H
273 #define _DEFLATE_H
274
275 /* #include "zutil.h" */
276
277 /* ===========================================================================
278  * Internal compression state.
279  */
280
281 #define LENGTH_CODES 29
282 /* number of length codes, not counting the special END_BLOCK code */
283
284 #define LITERALS  256
285 /* number of literal bytes 0..255 */
286
287 #define L_CODES (LITERALS+1+LENGTH_CODES)
288 /* number of Literal or Length codes, including the END_BLOCK code */
289
290 #define D_CODES   30
291 /* number of distance codes */
292
293 #define BL_CODES  19
294 /* number of codes used to transfer the bit lengths */
295
296 #define HEAP_SIZE (2*L_CODES+1)
297 /* maximum heap size */
298
299 #define MAX_BITS 15
300 /* All codes must not exceed MAX_BITS bits */
301
302 #define INIT_STATE    42
303 #define BUSY_STATE   113
304 #define FINISH_STATE 666
305 /* Stream status */
306
307
308 /* Data structure describing a single value and its code string. */
309 typedef struct ct_data_s {
310     union {
311         ush  freq;       /* frequency count */
312         ush  code;       /* bit string */
313     } fc;
314     union {
315         ush  dad;        /* father node in Huffman tree */
316         ush  len;        /* length of bit string */
317     } dl;
318 } FAR ct_data;
319
320 #define Freq fc.freq
321 #define Code fc.code
322 #define Dad  dl.dad
323 #define Len  dl.len
324
325 typedef struct static_tree_desc_s  static_tree_desc;
326
327 typedef struct tree_desc_s {
328     ct_data *dyn_tree;           /* the dynamic tree */
329     int     max_code;            /* largest code with non zero frequency */
330     static_tree_desc *stat_desc; /* the corresponding static tree */
331 } FAR tree_desc;
332
333 typedef ush Pos;
334 typedef Pos FAR Posf;
335 typedef unsigned IPos;
336
337 /* A Pos is an index in the character window. We use short instead of int to
338  * save space in the various tables. IPos is used only for parameter passing.
339  */
340
341 typedef struct deflate_state {
342     z_streamp strm;      /* pointer back to this zlib stream */
343     int   status;        /* as the name implies */
344     Bytef *pending_buf;  /* output still pending */
345     ulg   pending_buf_size; /* size of pending_buf */
346     Bytef *pending_out;  /* next pending byte to output to the stream */
347     int   pending;       /* nb of bytes in the pending buffer */
348     int   noheader;      /* suppress zlib header and adler32 */
349     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
350     Byte  method;        /* STORED (for zip only) or DEFLATED */
351     int   last_flush;    /* value of flush param for previous deflate call */
352
353                 /* used by deflate.c: */
354
355     uInt  w_size;        /* LZ77 window size (32K by default) */
356     uInt  w_bits;        /* log2(w_size)  (8..16) */
357     uInt  w_mask;        /* w_size - 1 */
358
359     Bytef *window;
360     /* Sliding window. Input bytes are read into the second half of the window,
361      * and move to the first half later to keep a dictionary of at least wSize
362      * bytes. With this organization, matches are limited to a distance of
363      * wSize-MAX_MATCH bytes, but this ensures that IO is always
364      * performed with a length multiple of the block size. Also, it limits
365      * the window size to 64K, which is quite useful on MSDOS.
366      * To do: use the user input buffer as sliding window.
367      */
368
369     ulg window_size;
370     /* Actual size of window: 2*wSize, except when the user input buffer
371      * is directly used as sliding window.
372      */
373
374     Posf *prev;
375     /* Link to older string with same hash index. To limit the size of this
376      * array to 64K, this link is maintained only for the last 32K strings.
377      * An index in this array is thus a window index modulo 32K.
378      */
379
380     Posf *head; /* Heads of the hash chains or NIL. */
381
382     uInt  ins_h;          /* hash index of string to be inserted */
383     uInt  hash_size;      /* number of elements in hash table */
384     uInt  hash_bits;      /* log2(hash_size) */
385     uInt  hash_mask;      /* hash_size-1 */
386
387     uInt  hash_shift;
388     /* Number of bits by which ins_h must be shifted at each input
389      * step. It must be such that after MIN_MATCH steps, the oldest
390      * byte no longer takes part in the hash key, that is:
391      *   hash_shift * MIN_MATCH >= hash_bits
392      */
393
394     long block_start;
395     /* Window position at the beginning of the current output block. Gets
396      * negative when the window is moved backwards.
397      */
398
399     uInt match_length;           /* length of best match */
400     IPos prev_match;             /* previous match */
401     int match_available;         /* set if previous match exists */
402     uInt strstart;               /* start of string to insert */
403     uInt match_start;            /* start of matching string */
404     uInt lookahead;              /* number of valid bytes ahead in window */
405
406     uInt prev_length;
407     /* Length of the best match at previous step. Matches not greater than this
408      * are discarded. This is used in the lazy match evaluation.
409      */
410
411     uInt max_chain_length;
412     /* To speed up deflation, hash chains are never searched beyond this
413      * length.  A higher limit improves compression ratio but degrades the
414      * speed.
415      */
416
417     uInt max_lazy_match;
418     /* Attempt to find a better match only when the current match is strictly
419      * smaller than this value. This mechanism is used only for compression
420      * levels >= 4.
421      */
422 #   define max_insert_length  max_lazy_match
423     /* Insert new strings in the hash table only if the match length is not
424      * greater than this length. This saves time but degrades compression.
425      * max_insert_length is used only for compression levels <= 3.
426      */
427
428     int level;    /* compression level (1..9) */
429     int strategy; /* favor or force Huffman coding*/
430
431     uInt good_match;
432     /* Use a faster search when the previous match is longer than this */
433
434     int nice_match; /* Stop searching when current match exceeds this */
435
436                 /* used by trees.c: */
437     /* Didn't use ct_data typedef below to supress compiler warning */
438     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
439     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
440     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
441
442     struct tree_desc_s l_desc;               /* desc. for literal tree */
443     struct tree_desc_s d_desc;               /* desc. for distance tree */
444     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
445
446     ush bl_count[MAX_BITS+1];
447     /* number of codes at each bit length for an optimal tree */
448
449     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
450     int heap_len;               /* number of elements in the heap */
451     int heap_max;               /* element of largest frequency */
452     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
453      * The same heap array is used to build all trees.
454      */
455
456     uch depth[2*L_CODES+1];
457     /* Depth of each subtree used as tie breaker for trees of equal frequency
458      */
459
460     uchf *l_buf;          /* buffer for literals or lengths */
461
462     uInt  lit_bufsize;
463     /* Size of match buffer for literals/lengths.  There are 4 reasons for
464      * limiting lit_bufsize to 64K:
465      *   - frequencies can be kept in 16 bit counters
466      *   - if compression is not successful for the first block, all input
467      *     data is still in the window so we can still emit a stored block even
468      *     when input comes from standard input.  (This can also be done for
469      *     all blocks if lit_bufsize is not greater than 32K.)
470      *   - if compression is not successful for a file smaller than 64K, we can
471      *     even emit a stored file instead of a stored block (saving 5 bytes).
472      *     This is applicable only for zip (not gzip or zlib).
473      *   - creating new Huffman trees less frequently may not provide fast
474      *     adaptation to changes in the input data statistics. (Take for
475      *     example a binary file with poorly compressible code followed by
476      *     a highly compressible string table.) Smaller buffer sizes give
477      *     fast adaptation but have of course the overhead of transmitting
478      *     trees more frequently.
479      *   - I can't count above 4
480      */
481
482     uInt last_lit;      /* running index in l_buf */
483
484     ushf *d_buf;
485     /* Buffer for distances. To simplify the code, d_buf and l_buf have
486      * the same number of elements. To use different lengths, an extra flag
487      * array would be necessary.
488      */
489
490     ulg opt_len;        /* bit length of current block with optimal trees */
491     ulg static_len;     /* bit length of current block with static trees */
492     ulg compressed_len; /* total bit length of compressed file */
493     uInt matches;       /* number of string matches in current block */
494     int last_eob_len;   /* bit length of EOB code for last block */
495
496 #ifdef DEBUG_ZLIB
497     ulg bits_sent;      /* bit length of the compressed data */
498 #endif
499
500     ush bi_buf;
501     /* Output buffer. bits are inserted starting at the bottom (least
502      * significant bits).
503      */
504     int bi_valid;
505     /* Number of valid bits in bi_buf.  All bits above the last valid bit
506      * are always zero.
507      */
508
509 } FAR deflate_state;
510
511 /* Output a byte on the stream.
512  * IN assertion: there is enough room in pending_buf.
513  */
514 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
515
516
517 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
518 /* Minimum amount of lookahead, except at the end of the input file.
519  * See deflate.c for comments about the MIN_MATCH+1.
520  */
521
522 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
523 /* In order to simplify the code, particularly on 16 bit machines, match
524  * distances are limited to MAX_DIST instead of WSIZE.
525  */
526
527         /* in trees.c */
528 void _tr_init         OF((deflate_state *s));
529 int  _tr_tally        OF((deflate_state *s, unsigned dist, unsigned lc));
530 ulg  _tr_flush_block  OF((deflate_state *s, charf *buf, ulg stored_len,
531                           int eof));
532 void _tr_align        OF((deflate_state *s));
533 void _tr_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
534                           int eof));
535 void _tr_stored_type_only OF((deflate_state *));
536
537 #endif
538 /* --- deflate.h */
539
540 /* +++ deflate.c */
541 /* deflate.c -- compress data using the deflation algorithm
542  * Copyright (C) 1995-1996 Jean-loup Gailly.
543  * For conditions of distribution and use, see copyright notice in zlib.h 
544  */
545
546 /*
547  *  ALGORITHM
548  *
549  *      The "deflation" process depends on being able to identify portions
550  *      of the input text which are identical to earlier input (within a
551  *      sliding window trailing behind the input currently being processed).
552  *
553  *      The most straightforward technique turns out to be the fastest for
554  *      most input files: try all possible matches and select the longest.
555  *      The key feature of this algorithm is that insertions into the string
556  *      dictionary are very simple and thus fast, and deletions are avoided
557  *      completely. Insertions are performed at each input character, whereas
558  *      string matches are performed only when the previous match ends. So it
559  *      is preferable to spend more time in matches to allow very fast string
560  *      insertions and avoid deletions. The matching algorithm for small
561  *      strings is inspired from that of Rabin & Karp. A brute force approach
562  *      is used to find longer strings when a small match has been found.
563  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
564  *      (by Leonid Broukhis).
565  *         A previous version of this file used a more sophisticated algorithm
566  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
567  *      time, but has a larger average cost, uses more memory and is patented.
568  *      However the F&G algorithm may be faster for some highly redundant
569  *      files if the parameter max_chain_length (described below) is too large.
570  *
571  *  ACKNOWLEDGEMENTS
572  *
573  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
574  *      I found it in 'freeze' written by Leonid Broukhis.
575  *      Thanks to many people for bug reports and testing.
576  *
577  *  REFERENCES
578  *
579  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
580  *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
581  *
582  *      A description of the Rabin and Karp algorithm is given in the book
583  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
584  *
585  *      Fiala,E.R., and Greene,D.H.
586  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
587  *
588  */
589
590 /* From: deflate.c,v 1.15 1996/07/24 13:40:58 me Exp $ */
591
592 /* #include "deflate.h" */
593
594 char deflate_copyright[] = " deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly ";
595 /*
596   If you use the zlib library in a product, an acknowledgment is welcome
597   in the documentation of your product. If for some reason you cannot
598   include such an acknowledgment, I would appreciate that you keep this
599   copyright string in the executable of your product.
600  */
601
602 /* ===========================================================================
603  *  Function prototypes.
604  */
605 typedef enum {
606     need_more,      /* block not completed, need more input or more output */
607     block_done,     /* block flush performed */
608     finish_started, /* finish started, need only more output at next deflate */
609     finish_done     /* finish done, accept no more input or output */
610 } block_state;
611
612 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
613 /* Compression function. Returns the block state after the call. */
614
615 local void fill_window    OF((deflate_state *s));
616 local block_state deflate_stored OF((deflate_state *s, int flush));
617 local block_state deflate_fast   OF((deflate_state *s, int flush));
618 local block_state deflate_slow   OF((deflate_state *s, int flush));
619 local void lm_init        OF((deflate_state *s));
620 local void putShortMSB    OF((deflate_state *s, uInt b));
621 local void flush_pending  OF((z_streamp strm));
622 local int read_buf        OF((z_streamp strm, charf *buf, unsigned size));
623 #ifdef ASMV
624       void match_init OF((void)); /* asm code initialization */
625       uInt longest_match  OF((deflate_state *s, IPos cur_match));
626 #else
627 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
628 #endif
629
630 #ifdef DEBUG_ZLIB
631 local  void check_match OF((deflate_state *s, IPos start, IPos match,
632                             int length));
633 #endif
634
635 /* ===========================================================================
636  * Local data
637  */
638
639 #define NIL 0
640 /* Tail of hash chains */
641
642 #ifndef TOO_FAR
643 #  define TOO_FAR 4096
644 #endif
645 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
646
647 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
648 /* Minimum amount of lookahead, except at the end of the input file.
649  * See deflate.c for comments about the MIN_MATCH+1.
650  */
651
652 /* Values for max_lazy_match, good_match and max_chain_length, depending on
653  * the desired pack level (0..9). The values given below have been tuned to
654  * exclude worst case performance for pathological files. Better values may be
655  * found for specific files.
656  */
657 typedef struct config_s {
658    ush good_length; /* reduce lazy search above this match length */
659    ush max_lazy;    /* do not perform lazy search above this match length */
660    ush nice_length; /* quit search above this match length */
661    ush max_chain;
662    compress_func func;
663 } config;
664
665 local config configuration_table[10] = {
666 /*      good lazy nice chain */
667 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
668 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
669 /* 2 */ {4,    5, 16,    8, deflate_fast},
670 /* 3 */ {4,    6, 32,   32, deflate_fast},
671
672 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
673 /* 5 */ {8,   16, 32,   32, deflate_slow},
674 /* 6 */ {8,   16, 128, 128, deflate_slow},
675 /* 7 */ {8,   32, 128, 256, deflate_slow},
676 /* 8 */ {32, 128, 258, 1024, deflate_slow},
677 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
678
679 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
680  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
681  * meaning.
682  */
683
684 #define EQUAL 0
685 /* result of memcmp for equal strings */
686
687 #ifndef NO_DUMMY_DECL
688 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
689 #endif
690
691 /* ===========================================================================
692  * Update a hash value with the given input byte
693  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
694  *    input characters, so that a running hash key can be computed from the
695  *    previous key instead of complete recalculation each time.
696  */
697 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
698
699
700 /* ===========================================================================
701  * Insert string str in the dictionary and set match_head to the previous head
702  * of the hash chain (the most recent string with same hash key). Return
703  * the previous length of the hash chain.
704  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
705  *    input characters and the first MIN_MATCH bytes of str are valid
706  *    (except for the last MIN_MATCH-1 bytes of the input file).
707  */
708 #define INSERT_STRING(s, str, match_head) \
709    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
710     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
711     s->head[s->ins_h] = (Pos)(str))
712
713 /* ===========================================================================
714  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
715  * prev[] will be initialized on the fly.
716  */
717 #define CLEAR_HASH(s) \
718     s->head[s->hash_size-1] = NIL; \
719     zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
720
721 /* ========================================================================= */
722 int deflateInit_(strm, level, version, stream_size)
723     z_streamp strm;
724     int level;
725     const char *version;
726     int stream_size;
727 {
728     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
729                          Z_DEFAULT_STRATEGY, version, stream_size);
730     /* To do: ignore strm->next_in if we use it as window */
731 }
732
733 /* ========================================================================= */
734 int deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
735                   version, stream_size)
736     z_streamp strm;
737     int  level;
738     int  method;
739     int  windowBits;
740     int  memLevel;
741     int  strategy;
742     const char *version;
743     int stream_size;
744 {
745     deflate_state *s;
746     int noheader = 0;
747     static char* my_version = ZLIB_VERSION;
748
749     ushf *overlay;
750     /* We overlay pending_buf and d_buf+l_buf. This works since the average
751      * output size for (length,distance) codes is <= 24 bits.
752      */
753
754     if (version == Z_NULL || version[0] != my_version[0] ||
755         stream_size != sizeof(z_stream)) {
756         return Z_VERSION_ERROR;
757     }
758     if (strm == Z_NULL) return Z_STREAM_ERROR;
759
760     strm->msg = Z_NULL;
761 #ifndef NO_ZCFUNCS
762     if (strm->zalloc == Z_NULL) {
763         strm->zalloc = zcalloc;
764         strm->opaque = (voidpf)0;
765     }
766     if (strm->zfree == Z_NULL) strm->zfree = zcfree;
767 #endif
768
769     if (level == Z_DEFAULT_COMPRESSION) level = 6;
770
771     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
772         noheader = 1;
773         windowBits = -windowBits;
774     }
775     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
776         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
777         strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
778         return Z_STREAM_ERROR;
779     }
780     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
781     if (s == Z_NULL) return Z_MEM_ERROR;
782     strm->state = (struct internal_state FAR *)s;
783     s->strm = strm;
784
785     s->noheader = noheader;
786     s->w_bits = windowBits;
787     s->w_size = 1 << s->w_bits;
788     s->w_mask = s->w_size - 1;
789
790     s->hash_bits = memLevel + 7;
791     s->hash_size = 1 << s->hash_bits;
792     s->hash_mask = s->hash_size - 1;
793     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
794
795     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
796     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
797     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
798
799     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
800
801     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
802     s->pending_buf = (uchf *) overlay;
803     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
804
805     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
806         s->pending_buf == Z_NULL) {
807         strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
808         deflateEnd (strm);
809         return Z_MEM_ERROR;
810     }
811     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
812     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
813
814     s->level = level;
815     s->strategy = strategy;
816     s->method = (Byte)method;
817
818     return deflateReset(strm);
819 }
820
821 /* ========================================================================= */
822 int deflateSetDictionary (strm, dictionary, dictLength)
823     z_streamp strm;
824     const Bytef *dictionary;
825     uInt  dictLength;
826 {
827     deflate_state *s;
828     uInt length = dictLength;
829     uInt n;
830     IPos hash_head = 0;
831
832     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
833         return Z_STREAM_ERROR;
834
835     s = (deflate_state *) strm->state;
836     if (s->status != INIT_STATE) return Z_STREAM_ERROR;
837
838     strm->adler = adler32(strm->adler, dictionary, dictLength);
839
840     if (length < MIN_MATCH) return Z_OK;
841     if (length > MAX_DIST(s)) {
842         length = MAX_DIST(s);
843 #ifndef USE_DICT_HEAD
844         dictionary += dictLength - length; /* use the tail of the dictionary */
845 #endif
846     }
847     zmemcpy((charf *)s->window, dictionary, length);
848     s->strstart = length;
849     s->block_start = (long)length;
850
851     /* Insert all strings in the hash table (except for the last two bytes).
852      * s->lookahead stays null, so s->ins_h will be recomputed at the next
853      * call of fill_window.
854      */
855     s->ins_h = s->window[0];
856     UPDATE_HASH(s, s->ins_h, s->window[1]);
857     for (n = 0; n <= length - MIN_MATCH; n++) {
858         INSERT_STRING(s, n, hash_head);
859     }
860     if (hash_head) hash_head = 0;  /* to make compiler happy */
861     return Z_OK;
862 }
863
864 /* ========================================================================= */
865 int deflateReset (strm)
866     z_streamp strm;
867 {
868     deflate_state *s;
869     
870     if (strm == Z_NULL || strm->state == Z_NULL ||
871         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
872
873     strm->total_in = strm->total_out = 0;
874     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
875     strm->data_type = Z_UNKNOWN;
876
877     s = (deflate_state *)strm->state;
878     s->pending = 0;
879     s->pending_out = s->pending_buf;
880
881     if (s->noheader < 0) {
882         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
883     }
884     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
885     strm->adler = 1;
886     s->last_flush = Z_NO_FLUSH;
887
888     _tr_init(s);
889     lm_init(s);
890
891     return Z_OK;
892 }
893
894 /* ========================================================================= */
895 int deflateParams(strm, level, strategy)
896     z_streamp strm;
897     int level;
898     int strategy;
899 {
900     deflate_state *s;
901     compress_func func;
902     int err = Z_OK;
903
904     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
905     s = (deflate_state *) strm->state;
906
907     if (level == Z_DEFAULT_COMPRESSION) {
908         level = 6;
909     }
910     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
911         return Z_STREAM_ERROR;
912     }
913     func = configuration_table[s->level].func;
914
915     if (func != configuration_table[level].func && strm->total_in != 0) {
916         /* Flush the last buffer: */
917         err = deflate(strm, Z_PARTIAL_FLUSH);
918     }
919     if (s->level != level) {
920         s->level = level;
921         s->max_lazy_match   = configuration_table[level].max_lazy;
922         s->good_match       = configuration_table[level].good_length;
923         s->nice_match       = configuration_table[level].nice_length;
924         s->max_chain_length = configuration_table[level].max_chain;
925     }
926     s->strategy = strategy;
927     return err;
928 }
929
930 /* =========================================================================
931  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
932  * IN assertion: the stream state is correct and there is enough room in
933  * pending_buf.
934  */
935 local void putShortMSB (s, b)
936     deflate_state *s;
937     uInt b;
938 {
939     put_byte(s, (Byte)(b >> 8));
940     put_byte(s, (Byte)(b & 0xff));
941 }   
942
943 /* =========================================================================
944  * Flush as much pending output as possible. All deflate() output goes
945  * through this function so some applications may wish to modify it
946  * to avoid allocating a large strm->next_out buffer and copying into it.
947  * (See also read_buf()).
948  */
949 local void flush_pending(strm)
950     z_streamp strm;
951 {
952     deflate_state *s = (deflate_state *) strm->state;
953     unsigned len = s->pending;
954
955     if (len > strm->avail_out) len = strm->avail_out;
956     if (len == 0) return;
957
958     if (strm->next_out != Z_NULL) {
959         zmemcpy(strm->next_out, s->pending_out, len);
960         strm->next_out += len;
961     }
962     s->pending_out += len;
963     strm->total_out += len;
964     strm->avail_out  -= len;
965     s->pending -= len;
966     if (s->pending == 0) {
967         s->pending_out = s->pending_buf;
968     }
969 }
970
971 /* ========================================================================= */
972 int deflate (strm, flush)
973     z_streamp strm;
974     int flush;
975 {
976     int old_flush; /* value of flush param for previous deflate call */
977     deflate_state *s;
978
979     if (strm == Z_NULL || strm->state == Z_NULL ||
980         flush > Z_FINISH || flush < 0) {
981         return Z_STREAM_ERROR;
982     }
983     s = (deflate_state *) strm->state;
984
985     if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
986         (s->status == FINISH_STATE && flush != Z_FINISH)) {
987         ERR_RETURN(strm, Z_STREAM_ERROR);
988     }
989     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
990
991     s->strm = strm; /* just in case */
992     old_flush = s->last_flush;
993     s->last_flush = flush;
994
995     /* Write the zlib header */
996     if (s->status == INIT_STATE) {
997
998         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
999         uInt level_flags = (s->level-1) >> 1;
1000
1001         if (level_flags > 3) level_flags = 3;
1002         header |= (level_flags << 6);
1003         if (s->strstart != 0) header |= PRESET_DICT;
1004         header += 31 - (header % 31);
1005
1006         s->status = BUSY_STATE;
1007         putShortMSB(s, header);
1008
1009         /* Save the adler32 of the preset dictionary: */
1010         if (s->strstart != 0) {
1011             putShortMSB(s, (uInt)(strm->adler >> 16));
1012             putShortMSB(s, (uInt)(strm->adler & 0xffff));
1013         }
1014         strm->adler = 1L;
1015     }
1016
1017     /* Flush as much pending output as possible */
1018     if (s->pending != 0) {
1019         flush_pending(strm);
1020         if (strm->avail_out == 0) {
1021             /* Since avail_out is 0, deflate will be called again with
1022              * more output space, but possibly with both pending and
1023              * avail_in equal to zero. There won't be anything to do,
1024              * but this is not an error situation so make sure we
1025              * return OK instead of BUF_ERROR at next call of deflate:
1026              */
1027             s->last_flush = -1;
1028             return Z_OK;
1029         }
1030
1031     /* Make sure there is something to do and avoid duplicate consecutive
1032      * flushes. For repeated and useless calls with Z_FINISH, we keep
1033      * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1034      */
1035     } else if (strm->avail_in == 0 && flush <= old_flush &&
1036                flush != Z_FINISH) {
1037         ERR_RETURN(strm, Z_BUF_ERROR);
1038     }
1039
1040     /* User must not provide more input after the first FINISH: */
1041     if (s->status == FINISH_STATE && strm->avail_in != 0) {
1042         ERR_RETURN(strm, Z_BUF_ERROR);
1043     }
1044
1045     /* Start a new block or continue the current one.
1046      */
1047     if (strm->avail_in != 0 || s->lookahead != 0 ||
1048         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1049         block_state bstate;
1050
1051         bstate = (*(configuration_table[s->level].func))(s, flush);
1052
1053         if (bstate == finish_started || bstate == finish_done) {
1054             s->status = FINISH_STATE;
1055         }
1056         if (bstate == need_more || bstate == finish_started) {
1057             if (strm->avail_out == 0) {
1058                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1059             }
1060             return Z_OK;
1061             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1062              * of deflate should use the same flush parameter to make sure
1063              * that the flush is complete. So we don't have to output an
1064              * empty block here, this will be done at next call. This also
1065              * ensures that for a very small output buffer, we emit at most
1066              * one empty block.
1067              */
1068         }
1069         if (bstate == block_done) {
1070             if (flush == Z_PARTIAL_FLUSH) {
1071                 _tr_align(s);
1072             } else if (flush == Z_PACKET_FLUSH) {
1073                 /* Output just the 3-bit `stored' block type value,
1074                    but not a zero length. */
1075                 _tr_stored_type_only(s);
1076             } else { /* FULL_FLUSH or SYNC_FLUSH */
1077                 _tr_stored_block(s, (char*)0, 0L, 0);
1078                 /* For a full flush, this empty block will be recognized
1079                  * as a special marker by inflate_sync().
1080                  */
1081                 if (flush == Z_FULL_FLUSH) {
1082                     CLEAR_HASH(s);             /* forget history */
1083                 }
1084             }
1085             flush_pending(strm);
1086             if (strm->avail_out == 0) {
1087               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1088               return Z_OK;
1089             }
1090         }
1091     }
1092     Assert(strm->avail_out > 0, "bug2");
1093
1094     if (flush != Z_FINISH) return Z_OK;
1095     if (s->noheader) return Z_STREAM_END;
1096
1097     /* Write the zlib trailer (adler32) */
1098     putShortMSB(s, (uInt)(strm->adler >> 16));
1099     putShortMSB(s, (uInt)(strm->adler & 0xffff));
1100     flush_pending(strm);
1101     /* If avail_out is zero, the application will call deflate again
1102      * to flush the rest.
1103      */
1104     s->noheader = -1; /* write the trailer only once! */
1105     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1106 }
1107
1108 /* ========================================================================= */
1109 int deflateEnd (strm)
1110     z_streamp strm;
1111 {
1112     int status;
1113     deflate_state *s;
1114
1115     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1116     s = (deflate_state *) strm->state;
1117
1118     status = s->status;
1119     if (status != INIT_STATE && status != BUSY_STATE &&
1120         status != FINISH_STATE) {
1121       return Z_STREAM_ERROR;
1122     }
1123
1124     /* Deallocate in reverse order of allocations: */
1125     TRY_FREE(strm, s->pending_buf);
1126     TRY_FREE(strm, s->head);
1127     TRY_FREE(strm, s->prev);
1128     TRY_FREE(strm, s->window);
1129
1130     ZFREE(strm, s);
1131     strm->state = Z_NULL;
1132
1133     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1134 }
1135
1136 /* =========================================================================
1137  * Copy the source state to the destination state.
1138  */
1139 int deflateCopy (dest, source)
1140     z_streamp dest;
1141     z_streamp source;
1142 {
1143     deflate_state *ds;
1144     deflate_state *ss;
1145     ushf *overlay;
1146
1147     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL)
1148         return Z_STREAM_ERROR;
1149     ss = (deflate_state *) source->state;
1150
1151     zmemcpy(dest, source, sizeof(*dest));
1152
1153     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1154     if (ds == Z_NULL) return Z_MEM_ERROR;
1155     dest->state = (struct internal_state FAR *) ds;
1156     zmemcpy(ds, ss, sizeof(*ds));
1157     ds->strm = dest;
1158
1159     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1160     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1161     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1162     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1163     ds->pending_buf = (uchf *) overlay;
1164
1165     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1166         ds->pending_buf == Z_NULL) {
1167         deflateEnd (dest);
1168         return Z_MEM_ERROR;
1169     }
1170     /* ??? following zmemcpy doesn't work for 16-bit MSDOS */
1171     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1172     zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1173     zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1174     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1175
1176     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1177     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1178     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1179
1180     ds->l_desc.dyn_tree = ds->dyn_ltree;
1181     ds->d_desc.dyn_tree = ds->dyn_dtree;
1182     ds->bl_desc.dyn_tree = ds->bl_tree;
1183
1184     return Z_OK;
1185 }
1186
1187 /* ===========================================================================
1188  * Return the number of bytes of output which are immediately available
1189  * for output from the decompressor.
1190  */
1191 int deflateOutputPending (strm)
1192     z_streamp strm;
1193 {
1194     if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1195     
1196     return ((deflate_state *)(strm->state))->pending;
1197 }
1198
1199 /* ===========================================================================
1200  * Read a new buffer from the current input stream, update the adler32
1201  * and total number of bytes read.  All deflate() input goes through
1202  * this function so some applications may wish to modify it to avoid
1203  * allocating a large strm->next_in buffer and copying from it.
1204  * (See also flush_pending()).
1205  */
1206 local int read_buf(strm, buf, size)
1207     z_streamp strm;
1208     charf *buf;
1209     unsigned size;
1210 {
1211     unsigned len = strm->avail_in;
1212
1213     if (len > size) len = size;
1214     if (len == 0) return 0;
1215
1216     strm->avail_in  -= len;
1217
1218     if (!((deflate_state *)(strm->state))->noheader) {
1219         strm->adler = adler32(strm->adler, strm->next_in, len);
1220     }
1221     zmemcpy(buf, strm->next_in, len);
1222     strm->next_in  += len;
1223     strm->total_in += len;
1224
1225     return (int)len;
1226 }
1227
1228 /* ===========================================================================
1229  * Initialize the "longest match" routines for a new zlib stream
1230  */
1231 local void lm_init (s)
1232     deflate_state *s;
1233 {
1234     s->window_size = (ulg)2L*s->w_size;
1235
1236     CLEAR_HASH(s);
1237
1238     /* Set the default configuration parameters:
1239      */
1240     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1241     s->good_match       = configuration_table[s->level].good_length;
1242     s->nice_match       = configuration_table[s->level].nice_length;
1243     s->max_chain_length = configuration_table[s->level].max_chain;
1244
1245     s->strstart = 0;
1246     s->block_start = 0L;
1247     s->lookahead = 0;
1248     s->match_length = s->prev_length = MIN_MATCH-1;
1249     s->match_available = 0;
1250     s->ins_h = 0;
1251 #ifdef ASMV
1252     match_init(); /* initialize the asm code */
1253 #endif
1254 }
1255
1256 /* ===========================================================================
1257  * Set match_start to the longest match starting at the given string and
1258  * return its length. Matches shorter or equal to prev_length are discarded,
1259  * in which case the result is equal to prev_length and match_start is
1260  * garbage.
1261  * IN assertions: cur_match is the head of the hash chain for the current
1262  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1263  * OUT assertion: the match length is not greater than s->lookahead.
1264  */
1265 #ifndef ASMV
1266 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1267  * match.S. The code will be functionally equivalent.
1268  */
1269 local uInt longest_match(s, cur_match)
1270     deflate_state *s;
1271     IPos cur_match;                             /* current match */
1272 {
1273     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1274     register Bytef *scan = s->window + s->strstart; /* current string */
1275     register Bytef *match;                       /* matched string */
1276     register int len;                           /* length of current match */
1277     int best_len = s->prev_length;              /* best match length so far */
1278     int nice_match = s->nice_match;             /* stop if match long enough */
1279     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1280         s->strstart - (IPos)MAX_DIST(s) : NIL;
1281     /* Stop when cur_match becomes <= limit. To simplify the code,
1282      * we prevent matches with the string of window index 0.
1283      */
1284     Posf *prev = s->prev;
1285     uInt wmask = s->w_mask;
1286
1287 #ifdef UNALIGNED_OK
1288     /* Compare two bytes at a time. Note: this is not always beneficial.
1289      * Try with and without -DUNALIGNED_OK to check.
1290      */
1291     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1292     register ush scan_start = *(ushf*)scan;
1293     register ush scan_end   = *(ushf*)(scan+best_len-1);
1294 #else
1295     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1296     register Byte scan_end1  = scan[best_len-1];
1297     register Byte scan_end   = scan[best_len];
1298 #endif
1299
1300     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1301      * It is easy to get rid of this optimization if necessary.
1302      */
1303     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1304
1305     /* Do not waste too much time if we already have a good match: */
1306     if (s->prev_length >= s->good_match) {
1307         chain_length >>= 2;
1308     }
1309     /* Do not look for matches beyond the end of the input. This is necessary
1310      * to make deflate deterministic.
1311      */
1312     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1313
1314     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1315
1316     do {
1317         Assert(cur_match < s->strstart, "no future");
1318         match = s->window + cur_match;
1319
1320         /* Skip to next match if the match length cannot increase
1321          * or if the match length is less than 2:
1322          */
1323 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1324         /* This code assumes sizeof(unsigned short) == 2. Do not use
1325          * UNALIGNED_OK if your compiler uses a different size.
1326          */
1327         if (*(ushf*)(match+best_len-1) != scan_end ||
1328             *(ushf*)match != scan_start) continue;
1329
1330         /* It is not necessary to compare scan[2] and match[2] since they are
1331          * always equal when the other bytes match, given that the hash keys
1332          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1333          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1334          * lookahead only every 4th comparison; the 128th check will be made
1335          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1336          * necessary to put more guard bytes at the end of the window, or
1337          * to check more often for insufficient lookahead.
1338          */
1339         Assert(scan[2] == match[2], "scan[2]?");
1340         scan++, match++;
1341         do {
1342         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1343                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1344                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1345                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1346                  scan < strend);
1347         /* The funny "do {}" generates better code on most compilers */
1348
1349         /* Here, scan <= window+strstart+257 */
1350         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1351         if (*scan == *match) scan++;
1352
1353         len = (MAX_MATCH - 1) - (int)(strend-scan);
1354         scan = strend - (MAX_MATCH-1);
1355
1356 #else /* UNALIGNED_OK */
1357
1358         if (match[best_len]   != scan_end  ||
1359             match[best_len-1] != scan_end1 ||
1360             *match            != *scan     ||
1361             *++match          != scan[1])      continue;
1362
1363         /* The check at best_len-1 can be removed because it will be made
1364          * again later. (This heuristic is not always a win.)
1365          * It is not necessary to compare scan[2] and match[2] since they
1366          * are always equal when the other bytes match, given that
1367          * the hash keys are equal and that HASH_BITS >= 8.
1368          */
1369         scan += 2, match++;
1370         Assert(*scan == *match, "match[2]?");
1371
1372         /* We check for insufficient lookahead only every 8th comparison;
1373          * the 256th check will be made at strstart+258.
1374          */
1375         do {
1376         } while (*++scan == *++match && *++scan == *++match &&
1377                  *++scan == *++match && *++scan == *++match &&
1378                  *++scan == *++match && *++scan == *++match &&
1379                  *++scan == *++match && *++scan == *++match &&
1380                  scan < strend);
1381
1382         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1383
1384         len = MAX_MATCH - (int)(strend - scan);
1385         scan = strend - MAX_MATCH;
1386
1387 #endif /* UNALIGNED_OK */
1388
1389         if (len > best_len) {
1390             s->match_start = cur_match;
1391             best_len = len;
1392             if (len >= nice_match) break;
1393 #ifdef UNALIGNED_OK
1394             scan_end = *(ushf*)(scan+best_len-1);
1395 #else
1396             scan_end1  = scan[best_len-1];
1397             scan_end   = scan[best_len];
1398 #endif
1399         }
1400     } while ((cur_match = prev[cur_match & wmask]) > limit
1401              && --chain_length != 0);
1402
1403     if ((uInt)best_len <= s->lookahead) return best_len;
1404     return s->lookahead;
1405 }
1406 #endif /* ASMV */
1407
1408 #ifdef DEBUG_ZLIB
1409 /* ===========================================================================
1410  * Check that the match at match_start is indeed a match.
1411  */
1412 local void check_match(s, start, match, length)
1413     deflate_state *s;
1414     IPos start, match;
1415     int length;
1416 {
1417     /* check that the match is indeed a match */
1418     if (zmemcmp((charf *)s->window + match,
1419                 (charf *)s->window + start, length) != EQUAL) {
1420         fprintf(stderr, " start %u, match %u, length %d\n",
1421                 start, match, length);
1422         do {
1423             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1424         } while (--length != 0);
1425         z_error("invalid match");
1426     }
1427     if (z_verbose > 1) {
1428         fprintf(stderr,"\\[%d,%d]", start-match, length);
1429         do { putc(s->window[start++], stderr); } while (--length != 0);
1430     }
1431 }
1432 #else
1433 #  define check_match(s, start, match, length)
1434 #endif
1435
1436 /* ===========================================================================
1437  * Fill the window when the lookahead becomes insufficient.
1438  * Updates strstart and lookahead.
1439  *
1440  * IN assertion: lookahead < MIN_LOOKAHEAD
1441  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1442  *    At least one byte has been read, or avail_in == 0; reads are
1443  *    performed for at least two bytes (required for the zip translate_eol
1444  *    option -- not supported here).
1445  */
1446 local void fill_window(s)
1447     deflate_state *s;
1448 {
1449     register unsigned n, m;
1450     register Posf *p;
1451     unsigned more;    /* Amount of free space at the end of the window. */
1452     uInt wsize = s->w_size;
1453
1454     do {
1455         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1456
1457         /* Deal with !@#$% 64K limit: */
1458         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1459             more = wsize;
1460
1461         } else if (more == (unsigned)(-1)) {
1462             /* Very unlikely, but possible on 16 bit machine if strstart == 0
1463              * and lookahead == 1 (input done one byte at time)
1464              */
1465             more--;
1466
1467         /* If the window is almost full and there is insufficient lookahead,
1468          * move the upper half to the lower one to make room in the upper half.
1469          */
1470         } else if (s->strstart >= wsize+MAX_DIST(s)) {
1471
1472             zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1473                    (unsigned)wsize);
1474             s->match_start -= wsize;
1475             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1476             s->block_start -= (long) wsize;
1477
1478             /* Slide the hash table (could be avoided with 32 bit values
1479                at the expense of memory usage). We slide even when level == 0
1480                to keep the hash table consistent if we switch back to level > 0
1481                later. (Using level 0 permanently is not an optimal usage of
1482                zlib, so we don't care about this pathological case.)
1483              */
1484             n = s->hash_size;
1485             p = &s->head[n];
1486             do {
1487                 m = *--p;
1488                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1489             } while (--n);
1490
1491             n = wsize;
1492             p = &s->prev[n];
1493             do {
1494                 m = *--p;
1495                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1496                 /* If n is not on any hash chain, prev[n] is garbage but
1497                  * its value will never be used.
1498                  */
1499             } while (--n);
1500             more += wsize;
1501         }
1502         if (s->strm->avail_in == 0) return;
1503
1504         /* If there was no sliding:
1505          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1506          *    more == window_size - lookahead - strstart
1507          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1508          * => more >= window_size - 2*WSIZE + 2
1509          * In the BIG_MEM or MMAP case (not yet supported),
1510          *   window_size == input_size + MIN_LOOKAHEAD  &&
1511          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1512          * Otherwise, window_size == 2*WSIZE so more >= 2.
1513          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1514          */
1515         Assert(more >= 2, "more < 2");
1516
1517         n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1518                      more);
1519         s->lookahead += n;
1520
1521         /* Initialize the hash value now that we have some input: */
1522         if (s->lookahead >= MIN_MATCH) {
1523             s->ins_h = s->window[s->strstart];
1524             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1525 #if MIN_MATCH != 3
1526             Call UPDATE_HASH() MIN_MATCH-3 more times
1527 #endif
1528         }
1529         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1530          * but this is not important since only literal bytes will be emitted.
1531          */
1532
1533     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1534 }
1535
1536 /* ===========================================================================
1537  * Flush the current block, with given end-of-file flag.
1538  * IN assertion: strstart is set to the end of the current match.
1539  */
1540 #define FLUSH_BLOCK_ONLY(s, eof) { \
1541    _tr_flush_block(s, (s->block_start >= 0L ? \
1542                    (charf *)&s->window[(unsigned)s->block_start] : \
1543                    (charf *)Z_NULL), \
1544                 (ulg)((long)s->strstart - s->block_start), \
1545                 (eof)); \
1546    s->block_start = s->strstart; \
1547    flush_pending(s->strm); \
1548    Tracev((stderr,"[FLUSH]")); \
1549 }
1550
1551 /* Same but force premature exit if necessary. */
1552 #define FLUSH_BLOCK(s, eof) { \
1553    FLUSH_BLOCK_ONLY(s, eof); \
1554    if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1555 }
1556
1557 /* ===========================================================================
1558  * Copy without compression as much as possible from the input stream, return
1559  * the current block state.
1560  * This function does not insert new strings in the dictionary since
1561  * uncompressible data is probably not useful. This function is used
1562  * only for the level=0 compression option.
1563  * NOTE: this function should be optimized to avoid extra copying from
1564  * window to pending_buf.
1565  */
1566 local block_state deflate_stored(s, flush)
1567     deflate_state *s;
1568     int flush;
1569 {
1570     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1571      * to pending_buf_size, and each stored block has a 5 byte header:
1572      */
1573     ulg max_block_size = 0xffff;
1574     ulg max_start;
1575
1576     if (max_block_size > s->pending_buf_size - 5) {
1577         max_block_size = s->pending_buf_size - 5;
1578     }
1579
1580     /* Copy as much as possible from input to output: */
1581     for (;;) {
1582         /* Fill the window as much as possible: */
1583         if (s->lookahead <= 1) {
1584
1585             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1586                    s->block_start >= (long)s->w_size, "slide too late");
1587
1588             fill_window(s);
1589             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1590
1591             if (s->lookahead == 0) break; /* flush the current block */
1592         }
1593         Assert(s->block_start >= 0L, "block gone");
1594
1595         s->strstart += s->lookahead;
1596         s->lookahead = 0;
1597
1598         /* Emit a stored block if pending_buf will be full: */
1599         max_start = s->block_start + max_block_size;
1600         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1601             /* strstart == 0 is possible when wraparound on 16-bit machine */
1602             s->lookahead = (uInt)(s->strstart - max_start);
1603             s->strstart = (uInt)max_start;
1604             FLUSH_BLOCK(s, 0);
1605         }
1606         /* Flush if we may have to slide, otherwise block_start may become
1607          * negative and the data will be gone:
1608          */
1609         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1610             FLUSH_BLOCK(s, 0);
1611         }
1612     }
1613     FLUSH_BLOCK(s, flush == Z_FINISH);
1614     return flush == Z_FINISH ? finish_done : block_done;
1615 }
1616
1617 /* ===========================================================================
1618  * Compress as much as possible from the input stream, return the current
1619  * block state.
1620  * This function does not perform lazy evaluation of matches and inserts
1621  * new strings in the dictionary only for unmatched strings or for short
1622  * matches. It is used only for the fast compression options.
1623  */
1624 local block_state deflate_fast(s, flush)
1625     deflate_state *s;
1626     int flush;
1627 {
1628     IPos hash_head = NIL; /* head of the hash chain */
1629     int bflush;           /* set if current block must be flushed */
1630
1631     for (;;) {
1632         /* Make sure that we always have enough lookahead, except
1633          * at the end of the input file. We need MAX_MATCH bytes
1634          * for the next match, plus MIN_MATCH bytes to insert the
1635          * string following the next match.
1636          */
1637         if (s->lookahead < MIN_LOOKAHEAD) {
1638             fill_window(s);
1639             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1640                 return need_more;
1641             }
1642             if (s->lookahead == 0) break; /* flush the current block */
1643         }
1644
1645         /* Insert the string window[strstart .. strstart+2] in the
1646          * dictionary, and set hash_head to the head of the hash chain:
1647          */
1648         if (s->lookahead >= MIN_MATCH) {
1649             INSERT_STRING(s, s->strstart, hash_head);
1650         }
1651
1652         /* Find the longest match, discarding those <= prev_length.
1653          * At this point we have always match_length < MIN_MATCH
1654          */
1655         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1656             /* To simplify the code, we prevent matches with the string
1657              * of window index 0 (in particular we have to avoid a match
1658              * of the string with itself at the start of the input file).
1659              */
1660             if (s->strategy != Z_HUFFMAN_ONLY) {
1661                 s->match_length = longest_match (s, hash_head);
1662             }
1663             /* longest_match() sets match_start */
1664         }
1665         if (s->match_length >= MIN_MATCH) {
1666             check_match(s, s->strstart, s->match_start, s->match_length);
1667
1668             bflush = _tr_tally(s, s->strstart - s->match_start,
1669                                s->match_length - MIN_MATCH);
1670
1671             s->lookahead -= s->match_length;
1672
1673             /* Insert new strings in the hash table only if the match length
1674              * is not too large. This saves time but degrades compression.
1675              */
1676             if (s->match_length <= s->max_insert_length &&
1677                 s->lookahead >= MIN_MATCH) {
1678                 s->match_length--; /* string at strstart already in hash table */
1679                 do {
1680                     s->strstart++;
1681                     INSERT_STRING(s, s->strstart, hash_head);
1682                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1683                      * always MIN_MATCH bytes ahead.
1684                      */
1685                 } while (--s->match_length != 0);
1686                 s->strstart++; 
1687             } else {
1688                 s->strstart += s->match_length;
1689                 s->match_length = 0;
1690                 s->ins_h = s->window[s->strstart];
1691                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1692 #if MIN_MATCH != 3
1693                 Call UPDATE_HASH() MIN_MATCH-3 more times
1694 #endif
1695                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1696                  * matter since it will be recomputed at next deflate call.
1697                  */
1698             }
1699         } else {
1700             /* No match, output a literal byte */
1701             Tracevv((stderr,"%c", s->window[s->strstart]));
1702             bflush = _tr_tally (s, 0, s->window[s->strstart]);
1703             s->lookahead--;
1704             s->strstart++; 
1705         }
1706         if (bflush) FLUSH_BLOCK(s, 0);
1707     }
1708     FLUSH_BLOCK(s, flush == Z_FINISH);
1709     return flush == Z_FINISH ? finish_done : block_done;
1710 }
1711
1712 /* ===========================================================================
1713  * Same as above, but achieves better compression. We use a lazy
1714  * evaluation for matches: a match is finally adopted only if there is
1715  * no better match at the next window position.
1716  */
1717 local block_state deflate_slow(s, flush)
1718     deflate_state *s;
1719     int flush;
1720 {
1721     IPos hash_head = NIL;    /* head of hash chain */
1722     int bflush;              /* set if current block must be flushed */
1723
1724     /* Process the input block. */
1725     for (;;) {
1726         /* Make sure that we always have enough lookahead, except
1727          * at the end of the input file. We need MAX_MATCH bytes
1728          * for the next match, plus MIN_MATCH bytes to insert the
1729          * string following the next match.
1730          */
1731         if (s->lookahead < MIN_LOOKAHEAD) {
1732             fill_window(s);
1733             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1734                 return need_more;
1735             }
1736             if (s->lookahead == 0) break; /* flush the current block */
1737         }
1738
1739         /* Insert the string window[strstart .. strstart+2] in the
1740          * dictionary, and set hash_head to the head of the hash chain:
1741          */
1742         if (s->lookahead >= MIN_MATCH) {
1743             INSERT_STRING(s, s->strstart, hash_head);
1744         }
1745
1746         /* Find the longest match, discarding those <= prev_length.
1747          */
1748         s->prev_length = s->match_length, s->prev_match = s->match_start;
1749         s->match_length = MIN_MATCH-1;
1750
1751         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1752             s->strstart - hash_head <= MAX_DIST(s)) {
1753             /* To simplify the code, we prevent matches with the string
1754              * of window index 0 (in particular we have to avoid a match
1755              * of the string with itself at the start of the input file).
1756              */
1757             if (s->strategy != Z_HUFFMAN_ONLY) {
1758                 s->match_length = longest_match (s, hash_head);
1759             }
1760             /* longest_match() sets match_start */
1761
1762             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1763                  (s->match_length == MIN_MATCH &&
1764                   s->strstart - s->match_start > TOO_FAR))) {
1765
1766                 /* If prev_match is also MIN_MATCH, match_start is garbage
1767                  * but we will ignore the current match anyway.
1768                  */
1769                 s->match_length = MIN_MATCH-1;
1770             }
1771         }
1772         /* If there was a match at the previous step and the current
1773          * match is not better, output the previous match:
1774          */
1775         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1776             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1777             /* Do not insert strings in hash table beyond this. */
1778
1779             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1780
1781             bflush = _tr_tally(s, s->strstart -1 - s->prev_match,
1782                                s->prev_length - MIN_MATCH);
1783
1784             /* Insert in hash table all strings up to the end of the match.
1785              * strstart-1 and strstart are already inserted. If there is not
1786              * enough lookahead, the last two strings are not inserted in
1787              * the hash table.
1788              */
1789             s->lookahead -= s->prev_length-1;
1790             s->prev_length -= 2;
1791             do {
1792                 if (++s->strstart <= max_insert) {
1793                     INSERT_STRING(s, s->strstart, hash_head);
1794                 }
1795             } while (--s->prev_length != 0);
1796             s->match_available = 0;
1797             s->match_length = MIN_MATCH-1;
1798             s->strstart++;
1799
1800             if (bflush) FLUSH_BLOCK(s, 0);
1801
1802         } else if (s->match_available) {
1803             /* If there was no match at the previous position, output a
1804              * single literal. If there was a match but the current match
1805              * is longer, truncate the previous match to a single literal.
1806              */
1807             Tracevv((stderr,"%c", s->window[s->strstart-1]));
1808             if (_tr_tally (s, 0, s->window[s->strstart-1])) {
1809                 FLUSH_BLOCK_ONLY(s, 0);
1810             }
1811             s->strstart++;
1812             s->lookahead--;
1813             if (s->strm->avail_out == 0) return need_more;
1814         } else {
1815             /* There is no previous match to compare with, wait for
1816              * the next step to decide.
1817              */
1818             s->match_available = 1;
1819             s->strstart++;
1820             s->lookahead--;
1821         }
1822     }
1823     Assert (flush != Z_NO_FLUSH, "no flush?");
1824     if (s->match_available) {
1825         Tracevv((stderr,"%c", s->window[s->strstart-1]));
1826         _tr_tally (s, 0, s->window[s->strstart-1]);
1827         s->match_available = 0;
1828     }
1829     FLUSH_BLOCK(s, flush == Z_FINISH);
1830     return flush == Z_FINISH ? finish_done : block_done;
1831 }
1832 /* --- deflate.c */
1833
1834 /* +++ trees.c */
1835 /* trees.c -- output deflated data using Huffman coding
1836  * Copyright (C) 1995-1996 Jean-loup Gailly
1837  * For conditions of distribution and use, see copyright notice in zlib.h 
1838  */
1839
1840 /*
1841  *  ALGORITHM
1842  *
1843  *      The "deflation" process uses several Huffman trees. The more
1844  *      common source values are represented by shorter bit sequences.
1845  *
1846  *      Each code tree is stored in a compressed form which is itself
1847  * a Huffman encoding of the lengths of all the code strings (in
1848  * ascending order by source values).  The actual code strings are
1849  * reconstructed from the lengths in the inflate process, as described
1850  * in the deflate specification.
1851  *
1852  *  REFERENCES
1853  *
1854  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1855  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1856  *
1857  *      Storer, James A.
1858  *          Data Compression:  Methods and Theory, pp. 49-50.
1859  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
1860  *
1861  *      Sedgewick, R.
1862  *          Algorithms, p290.
1863  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
1864  */
1865
1866 /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */
1867
1868 /* #include "deflate.h" */
1869
1870 #ifdef DEBUG_ZLIB
1871 #  include <ctype.h>
1872 #endif
1873
1874 /* ===========================================================================
1875  * Constants
1876  */
1877
1878 #define MAX_BL_BITS 7
1879 /* Bit length codes must not exceed MAX_BL_BITS bits */
1880
1881 #define END_BLOCK 256
1882 /* end of block literal code */
1883
1884 #define REP_3_6      16
1885 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
1886
1887 #define REPZ_3_10    17
1888 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
1889
1890 #define REPZ_11_138  18
1891 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
1892
1893 local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1894    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1895
1896 local int extra_dbits[D_CODES] /* extra bits for each distance code */
1897    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1898
1899 local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1900    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1901
1902 local uch bl_order[BL_CODES]
1903    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1904 /* The lengths of the bit length codes are sent in order of decreasing
1905  * probability, to avoid transmitting the lengths for unused bit length codes.
1906  */
1907
1908 #define Buf_size (8 * 2*sizeof(char))
1909 /* Number of bits used within bi_buf. (bi_buf might be implemented on
1910  * more than 16 bits on some systems.)
1911  */
1912
1913 /* ===========================================================================
1914  * Local data. These are initialized only once.
1915  */
1916
1917 local ct_data static_ltree[L_CODES+2];
1918 /* The static literal tree. Since the bit lengths are imposed, there is no
1919  * need for the L_CODES extra codes used during heap construction. However
1920  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
1921  * below).
1922  */
1923
1924 local ct_data static_dtree[D_CODES];
1925 /* The static distance tree. (Actually a trivial tree since all codes use
1926  * 5 bits.)
1927  */
1928
1929 local uch dist_code[512];
1930 /* distance codes. The first 256 values correspond to the distances
1931  * 3 .. 258, the last 256 values correspond to the top 8 bits of
1932  * the 15 bit distances.
1933  */
1934
1935 local uch length_code[MAX_MATCH-MIN_MATCH+1];
1936 /* length code for each normalized match length (0 == MIN_MATCH) */
1937
1938 local int base_length[LENGTH_CODES];
1939 /* First normalized length for each code (0 = MIN_MATCH) */
1940
1941 local int base_dist[D_CODES];
1942 /* First normalized distance for each code (0 = distance of 1) */
1943
1944 struct static_tree_desc_s {
1945     ct_data *static_tree;        /* static tree or NULL */
1946     intf    *extra_bits;         /* extra bits for each code or NULL */
1947     int     extra_base;          /* base index for extra_bits */
1948     int     elems;               /* max number of elements in the tree */
1949     int     max_length;          /* max bit length for the codes */
1950 };
1951
1952 local static_tree_desc  static_l_desc =
1953 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1954
1955 local static_tree_desc  static_d_desc =
1956 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
1957
1958 local static_tree_desc  static_bl_desc =
1959 {(ct_data *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
1960
1961 /* ===========================================================================
1962  * Local (static) routines in this file.
1963  */
1964
1965 local void tr_static_init OF((void));
1966 local void init_block     OF((deflate_state *s));
1967 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
1968 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
1969 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
1970 local void build_tree     OF((deflate_state *s, tree_desc *desc));
1971 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1972 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1973 local int  build_bl_tree  OF((deflate_state *s));
1974 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1975                               int blcodes));
1976 local void compress_block OF((deflate_state *s, ct_data *ltree,
1977                               ct_data *dtree));
1978 local void set_data_type  OF((deflate_state *s));
1979 local unsigned bi_reverse OF((unsigned value, int length));
1980 local void bi_windup      OF((deflate_state *s));
1981 local void bi_flush       OF((deflate_state *s));
1982 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
1983                               int header));
1984
1985 #ifndef DEBUG_ZLIB
1986 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1987    /* Send a code of the given tree. c and tree must not have side effects */
1988
1989 #else /* DEBUG_ZLIB */
1990 #  define send_code(s, c, tree) \
1991      { if (verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
1992        send_bits(s, tree[c].Code, tree[c].Len); }
1993 #endif
1994
1995 #define d_code(dist) \
1996    ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1997 /* Mapping from a distance to a distance code. dist is the distance - 1 and
1998  * must not have side effects. dist_code[256] and dist_code[257] are never
1999  * used.
2000  */
2001
2002 /* ===========================================================================
2003  * Output a short LSB first on the stream.
2004  * IN assertion: there is enough room in pendingBuf.
2005  */
2006 #define put_short(s, w) { \
2007     put_byte(s, (uch)((w) & 0xff)); \
2008     put_byte(s, (uch)((ush)(w) >> 8)); \
2009 }
2010
2011 /* ===========================================================================
2012  * Send a value on a given number of bits.
2013  * IN assertion: length <= 16 and value fits in length bits.
2014  */
2015 #ifdef DEBUG_ZLIB
2016 local void send_bits      OF((deflate_state *s, int value, int length));
2017
2018 local void send_bits(s, value, length)
2019     deflate_state *s;
2020     int value;  /* value to send */
2021     int length; /* number of bits */
2022 {
2023     Tracevv((stderr," l %2d v %4x ", length, value));
2024     Assert(length > 0 && length <= 15, "invalid length");
2025     s->bits_sent += (ulg)length;
2026
2027     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2028      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2029      * unused bits in value.
2030      */
2031     if (s->bi_valid > (int)Buf_size - length) {
2032         s->bi_buf |= (value << s->bi_valid);
2033         put_short(s, s->bi_buf);
2034         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2035         s->bi_valid += length - Buf_size;
2036     } else {
2037         s->bi_buf |= value << s->bi_valid;
2038         s->bi_valid += length;
2039     }
2040 }
2041 #else /* !DEBUG_ZLIB */
2042
2043 #define send_bits(s, value, length) \
2044 { int len = length;\
2045   if (s->bi_valid > (int)Buf_size - len) {\
2046     int val = value;\
2047     s->bi_buf |= (val << s->bi_valid);\
2048     put_short(s, s->bi_buf);\
2049     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2050     s->bi_valid += len - Buf_size;\
2051   } else {\
2052     s->bi_buf |= (value) << s->bi_valid;\
2053     s->bi_valid += len;\
2054   }\
2055 }
2056 #endif /* DEBUG_ZLIB */
2057
2058
2059 #define MAX(a,b) (a >= b ? a : b)
2060 /* the arguments must not have side effects */
2061
2062 /* ===========================================================================
2063  * Initialize the various 'constant' tables. In a multi-threaded environment,
2064  * this function may be called by two threads concurrently, but this is
2065  * harmless since both invocations do exactly the same thing.
2066  */
2067 local void tr_static_init()
2068 {
2069     static int static_init_done = 0;
2070     int n;        /* iterates over tree elements */
2071     int bits;     /* bit counter */
2072     int length;   /* length value */
2073     int code;     /* code value */
2074     int dist;     /* distance index */
2075     ush bl_count[MAX_BITS+1];
2076     /* number of codes at each bit length for an optimal tree */
2077
2078     if (static_init_done) return;
2079
2080     /* Initialize the mapping length (0..255) -> length code (0..28) */
2081     length = 0;
2082     for (code = 0; code < LENGTH_CODES-1; code++) {
2083         base_length[code] = length;
2084         for (n = 0; n < (1<<extra_lbits[code]); n++) {
2085             length_code[length++] = (uch)code;
2086         }
2087     }
2088     Assert (length == 256, "tr_static_init: length != 256");
2089     /* Note that the length 255 (match length 258) can be represented
2090      * in two different ways: code 284 + 5 bits or code 285, so we
2091      * overwrite length_code[255] to use the best encoding:
2092      */
2093     length_code[length-1] = (uch)code;
2094
2095     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2096     dist = 0;
2097     for (code = 0 ; code < 16; code++) {
2098         base_dist[code] = dist;
2099         for (n = 0; n < (1<<extra_dbits[code]); n++) {
2100             dist_code[dist++] = (uch)code;
2101         }
2102     }
2103     Assert (dist == 256, "tr_static_init: dist != 256");
2104     dist >>= 7; /* from now on, all distances are divided by 128 */
2105     for ( ; code < D_CODES; code++) {
2106         base_dist[code] = dist << 7;
2107         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2108             dist_code[256 + dist++] = (uch)code;
2109         }
2110     }
2111     Assert (dist == 256, "tr_static_init: 256+dist != 512");
2112
2113     /* Construct the codes of the static literal tree */
2114     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2115     n = 0;
2116     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2117     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2118     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2119     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2120     /* Codes 286 and 287 do not exist, but we must include them in the
2121      * tree construction to get a canonical Huffman tree (longest code
2122      * all ones)
2123      */
2124     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2125
2126     /* The static distance tree is trivial: */
2127     for (n = 0; n < D_CODES; n++) {
2128         static_dtree[n].Len = 5;
2129         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2130     }
2131     static_init_done = 1;
2132 }
2133
2134 /* ===========================================================================
2135  * Initialize the tree data structures for a new zlib stream.
2136  */
2137 void _tr_init(s)
2138     deflate_state *s;
2139 {
2140     tr_static_init();
2141
2142     s->compressed_len = 0L;
2143
2144     s->l_desc.dyn_tree = s->dyn_ltree;
2145     s->l_desc.stat_desc = &static_l_desc;
2146
2147     s->d_desc.dyn_tree = s->dyn_dtree;
2148     s->d_desc.stat_desc = &static_d_desc;
2149
2150     s->bl_desc.dyn_tree = s->bl_tree;
2151     s->bl_desc.stat_desc = &static_bl_desc;
2152
2153     s->bi_buf = 0;
2154     s->bi_valid = 0;
2155     s->last_eob_len = 8; /* enough lookahead for inflate */
2156 #ifdef DEBUG_ZLIB
2157     s->bits_sent = 0L;
2158 #endif
2159
2160     /* Initialize the first block of the first file: */
2161     init_block(s);
2162 }
2163
2164 /* ===========================================================================
2165  * Initialize a new block.
2166  */
2167 local void init_block(s)
2168     deflate_state *s;
2169 {
2170     int n; /* iterates over tree elements */
2171
2172     /* Initialize the trees. */
2173     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
2174     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
2175     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2176
2177     s->dyn_ltree[END_BLOCK].Freq = 1;
2178     s->opt_len = s->static_len = 0L;
2179     s->last_lit = s->matches = 0;
2180 }
2181
2182 #define SMALLEST 1
2183 /* Index within the heap array of least frequent node in the Huffman tree */
2184
2185
2186 /* ===========================================================================
2187  * Remove the smallest element from the heap and recreate the heap with
2188  * one less element. Updates heap and heap_len.
2189  */
2190 #define pqremove(s, tree, top) \
2191 {\
2192     top = s->heap[SMALLEST]; \
2193     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2194     pqdownheap(s, tree, SMALLEST); \
2195 }
2196
2197 /* ===========================================================================
2198  * Compares to subtrees, using the tree depth as tie breaker when
2199  * the subtrees have equal frequency. This minimizes the worst case length.
2200  */
2201 #define smaller(tree, n, m, depth) \
2202    (tree[n].Freq < tree[m].Freq || \
2203    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2204
2205 /* ===========================================================================
2206  * Restore the heap property by moving down the tree starting at node k,
2207  * exchanging a node with the smallest of its two sons if necessary, stopping
2208  * when the heap property is re-established (each father smaller than its
2209  * two sons).
2210  */
2211 local void pqdownheap(s, tree, k)
2212     deflate_state *s;
2213     ct_data *tree;  /* the tree to restore */
2214     int k;               /* node to move down */
2215 {
2216     int v = s->heap[k];
2217     int j = k << 1;  /* left son of k */
2218     while (j <= s->heap_len) {
2219         /* Set j to the smallest of the two sons: */
2220         if (j < s->heap_len &&
2221             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2222             j++;
2223         }
2224         /* Exit if v is smaller than both sons */
2225         if (smaller(tree, v, s->heap[j], s->depth)) break;
2226
2227         /* Exchange v with the smallest son */
2228         s->heap[k] = s->heap[j];  k = j;
2229
2230         /* And continue down the tree, setting j to the left son of k */
2231         j <<= 1;
2232     }
2233     s->heap[k] = v;
2234 }
2235
2236 /* ===========================================================================
2237  * Compute the optimal bit lengths for a tree and update the total bit length
2238  * for the current block.
2239  * IN assertion: the fields freq and dad are set, heap[heap_max] and
2240  *    above are the tree nodes sorted by increasing frequency.
2241  * OUT assertions: the field len is set to the optimal bit length, the
2242  *     array bl_count contains the frequencies for each bit length.
2243  *     The length opt_len is updated; static_len is also updated if stree is
2244  *     not null.
2245  */
2246 local void gen_bitlen(s, desc)
2247     deflate_state *s;
2248     tree_desc *desc;    /* the tree descriptor */
2249 {
2250     ct_data *tree  = desc->dyn_tree;
2251     int max_code   = desc->max_code;
2252     ct_data *stree = desc->stat_desc->static_tree;
2253     intf *extra    = desc->stat_desc->extra_bits;
2254     int base       = desc->stat_desc->extra_base;
2255     int max_length = desc->stat_desc->max_length;
2256     int h;              /* heap index */
2257     int n, m;           /* iterate over the tree elements */
2258     int bits;           /* bit length */
2259     int xbits;          /* extra bits */
2260     ush f;              /* frequency */
2261     int overflow = 0;   /* number of elements with bit length too large */
2262
2263     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2264
2265     /* In a first pass, compute the optimal bit lengths (which may
2266      * overflow in the case of the bit length tree).
2267      */
2268     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2269
2270     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2271         n = s->heap[h];
2272         bits = tree[tree[n].Dad].Len + 1;
2273         if (bits > max_length) bits = max_length, overflow++;
2274         tree[n].Len = (ush)bits;
2275         /* We overwrite tree[n].Dad which is no longer needed */
2276
2277         if (n > max_code) continue; /* not a leaf node */
2278
2279         s->bl_count[bits]++;
2280         xbits = 0;
2281         if (n >= base) xbits = extra[n-base];
2282         f = tree[n].Freq;
2283         s->opt_len += (ulg)f * (bits + xbits);
2284         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2285     }
2286     if (overflow == 0) return;
2287
2288     Trace((stderr,"\nbit length overflow\n"));
2289     /* This happens for example on obj2 and pic of the Calgary corpus */
2290
2291     /* Find the first bit length which could increase: */
2292     do {
2293         bits = max_length-1;
2294         while (s->bl_count[bits] == 0) bits--;
2295         s->bl_count[bits]--;      /* move one leaf down the tree */
2296         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2297         s->bl_count[max_length]--;
2298         /* The brother of the overflow item also moves one step up,
2299          * but this does not affect bl_count[max_length]
2300          */
2301         overflow -= 2;
2302     } while (overflow > 0);
2303
2304     /* Now recompute all bit lengths, scanning in increasing frequency.
2305      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2306      * lengths instead of fixing only the wrong ones. This idea is taken
2307      * from 'ar' written by Haruhiko Okumura.)
2308      */
2309     for (bits = max_length; bits != 0; bits--) {
2310         n = s->bl_count[bits];
2311         while (n != 0) {
2312             m = s->heap[--h];
2313             if (m > max_code) continue;
2314             if (tree[m].Len != (unsigned) bits) {
2315                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2316                 s->opt_len += ((long)bits - (long)tree[m].Len)
2317                               *(long)tree[m].Freq;
2318                 tree[m].Len = (ush)bits;
2319             }
2320             n--;
2321         }
2322     }
2323 }
2324
2325 /* ===========================================================================
2326  * Generate the codes for a given tree and bit counts (which need not be
2327  * optimal).
2328  * IN assertion: the array bl_count contains the bit length statistics for
2329  * the given tree and the field len is set for all tree elements.
2330  * OUT assertion: the field code is set for all tree elements of non
2331  *     zero code length.
2332  */
2333 local void gen_codes (tree, max_code, bl_count)
2334     ct_data *tree;             /* the tree to decorate */
2335     int max_code;              /* largest code with non zero frequency */
2336     ushf *bl_count;            /* number of codes at each bit length */
2337 {
2338     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2339     ush code = 0;              /* running code value */
2340     int bits;                  /* bit index */
2341     int n;                     /* code index */
2342
2343     /* The distribution counts are first used to generate the code values
2344      * without bit reversal.
2345      */
2346     for (bits = 1; bits <= MAX_BITS; bits++) {
2347         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2348     }
2349     /* Check that the bit counts in bl_count are consistent. The last code
2350      * must be all ones.
2351      */
2352     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2353             "inconsistent bit counts");
2354     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2355
2356     for (n = 0;  n <= max_code; n++) {
2357         int len = tree[n].Len;
2358         if (len == 0) continue;
2359         /* Now reverse the bits */
2360         tree[n].Code = bi_reverse(next_code[len]++, len);
2361
2362         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2363              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2364     }
2365 }
2366
2367 /* ===========================================================================
2368  * Construct one Huffman tree and assigns the code bit strings and lengths.
2369  * Update the total bit length for the current block.
2370  * IN assertion: the field freq is set for all tree elements.
2371  * OUT assertions: the fields len and code are set to the optimal bit length
2372  *     and corresponding code. The length opt_len is updated; static_len is
2373  *     also updated if stree is not null. The field max_code is set.
2374  */
2375 local void build_tree(s, desc)
2376     deflate_state *s;
2377     tree_desc *desc; /* the tree descriptor */
2378 {
2379     ct_data *tree   = desc->dyn_tree;
2380     ct_data *stree  = desc->stat_desc->static_tree;
2381     int elems       = desc->stat_desc->elems;
2382     int n, m;          /* iterate over heap elements */
2383     int max_code = -1; /* largest code with non zero frequency */
2384     int node;          /* new node being created */
2385
2386     /* Construct the initial heap, with least frequent element in
2387      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2388      * heap[0] is not used.
2389      */
2390     s->heap_len = 0, s->heap_max = HEAP_SIZE;
2391
2392     for (n = 0; n < elems; n++) {
2393         if (tree[n].Freq != 0) {
2394             s->heap[++(s->heap_len)] = max_code = n;
2395             s->depth[n] = 0;
2396         } else {
2397             tree[n].Len = 0;
2398         }
2399     }
2400
2401     /* The pkzip format requires that at least one distance code exists,
2402      * and that at least one bit should be sent even if there is only one
2403      * possible code. So to avoid special checks later on we force at least
2404      * two codes of non zero frequency.
2405      */
2406     while (s->heap_len < 2) {
2407         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2408         tree[node].Freq = 1;
2409         s->depth[node] = 0;
2410         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2411         /* node is 0 or 1 so it does not have extra bits */
2412     }
2413     desc->max_code = max_code;
2414
2415     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2416      * establish sub-heaps of increasing lengths:
2417      */
2418     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2419
2420     /* Construct the Huffman tree by repeatedly combining the least two
2421      * frequent nodes.
2422      */
2423     node = elems;              /* next internal node of the tree */
2424     do {
2425         pqremove(s, tree, n);  /* n = node of least frequency */
2426         m = s->heap[SMALLEST]; /* m = node of next least frequency */
2427
2428         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2429         s->heap[--(s->heap_max)] = m;
2430
2431         /* Create a new node father of n and m */
2432         tree[node].Freq = tree[n].Freq + tree[m].Freq;
2433         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2434         tree[n].Dad = tree[m].Dad = (ush)node;
2435 #ifdef DUMP_BL_TREE
2436         if (tree == s->bl_tree) {
2437             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2438                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2439         }
2440 #endif
2441         /* and insert the new node in the heap */
2442         s->heap[SMALLEST] = node++;
2443         pqdownheap(s, tree, SMALLEST);
2444
2445     } while (s->heap_len >= 2);
2446
2447     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2448
2449     /* At this point, the fields freq and dad are set. We can now
2450      * generate the bit lengths.
2451      */
2452     gen_bitlen(s, (tree_desc *)desc);
2453
2454     /* The field len is now set, we can generate the bit codes */
2455     gen_codes ((ct_data *)tree, max_code, s->bl_count);
2456 }
2457
2458 /* ===========================================================================
2459  * Scan a literal or distance tree to determine the frequencies of the codes
2460  * in the bit length tree.
2461  */
2462 local void scan_tree (s, tree, max_code)
2463     deflate_state *s;
2464     ct_data *tree;   /* the tree to be scanned */
2465     int max_code;    /* and its largest code of non zero frequency */
2466 {
2467     int n;                     /* iterates over all tree elements */
2468     int prevlen = -1;          /* last emitted length */
2469     int curlen;                /* length of current code */
2470     int nextlen = tree[0].Len; /* length of next code */
2471     int count = 0;             /* repeat count of the current code */
2472     int max_count = 7;         /* max repeat count */
2473     int min_count = 4;         /* min repeat count */
2474
2475     if (nextlen == 0) max_count = 138, min_count = 3;
2476     tree[max_code+1].Len = (ush)0xffff; /* guard */
2477
2478     for (n = 0; n <= max_code; n++) {
2479         curlen = nextlen; nextlen = tree[n+1].Len;
2480         if (++count < max_count && curlen == nextlen) {
2481             continue;
2482         } else if (count < min_count) {
2483             s->bl_tree[curlen].Freq += count;
2484         } else if (curlen != 0) {
2485             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2486             s->bl_tree[REP_3_6].Freq++;
2487         } else if (count <= 10) {
2488             s->bl_tree[REPZ_3_10].Freq++;
2489         } else {
2490             s->bl_tree[REPZ_11_138].Freq++;
2491         }
2492         count = 0; prevlen = curlen;
2493         if (nextlen == 0) {
2494             max_count = 138, min_count = 3;
2495         } else if (curlen == nextlen) {
2496             max_count = 6, min_count = 3;
2497         } else {
2498             max_count = 7, min_count = 4;
2499         }
2500     }
2501 }
2502
2503 /* ===========================================================================
2504  * Send a literal or distance tree in compressed form, using the codes in
2505  * bl_tree.
2506  */
2507 local void send_tree (s, tree, max_code)
2508     deflate_state *s;
2509     ct_data *tree; /* the tree to be scanned */
2510     int max_code;       /* and its largest code of non zero frequency */
2511 {
2512     int n;                     /* iterates over all tree elements */
2513     int prevlen = -1;          /* last emitted length */
2514     int curlen;                /* length of current code */
2515     int nextlen = tree[0].Len; /* length of next code */
2516     int count = 0;             /* repeat count of the current code */
2517     int max_count = 7;         /* max repeat count */
2518     int min_count = 4;         /* min repeat count */
2519
2520     /* tree[max_code+1].Len = -1; */  /* guard already set */
2521     if (nextlen == 0) max_count = 138, min_count = 3;
2522
2523     for (n = 0; n <= max_code; n++) {
2524         curlen = nextlen; nextlen = tree[n+1].Len;
2525         if (++count < max_count && curlen == nextlen) {
2526             continue;
2527         } else if (count < min_count) {
2528             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2529
2530         } else if (curlen != 0) {
2531             if (curlen != prevlen) {
2532                 send_code(s, curlen, s->bl_tree); count--;
2533             }
2534             Assert(count >= 3 && count <= 6, " 3_6?");
2535             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2536
2537         } else if (count <= 10) {
2538             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2539
2540         } else {
2541             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2542         }
2543         count = 0; prevlen = curlen;
2544         if (nextlen == 0) {
2545             max_count = 138, min_count = 3;
2546         } else if (curlen == nextlen) {
2547             max_count = 6, min_count = 3;
2548         } else {
2549             max_count = 7, min_count = 4;
2550         }
2551     }
2552 }
2553
2554 /* ===========================================================================
2555  * Construct the Huffman tree for the bit lengths and return the index in
2556  * bl_order of the last bit length code to send.
2557  */
2558 local int build_bl_tree(s)
2559     deflate_state *s;
2560 {
2561     int max_blindex;  /* index of last bit length code of non zero freq */
2562
2563     /* Determine the bit length frequencies for literal and distance trees */
2564     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2565     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2566
2567     /* Build the bit length tree: */
2568     build_tree(s, (tree_desc *)(&(s->bl_desc)));
2569     /* opt_len now includes the length of the tree representations, except
2570      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2571      */
2572
2573     /* Determine the number of bit length codes to send. The pkzip format
2574      * requires that at least 4 bit length codes be sent. (appnote.txt says
2575      * 3 but the actual value used is 4.)
2576      */
2577     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2578         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2579     }
2580     /* Update opt_len to include the bit length tree and counts */
2581     s->opt_len += 3*(max_blindex+1) + 5+5+4;
2582     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2583             s->opt_len, s->static_len));
2584
2585     return max_blindex;
2586 }
2587
2588 /* ===========================================================================
2589  * Send the header for a block using dynamic Huffman trees: the counts, the
2590  * lengths of the bit length codes, the literal tree and the distance tree.
2591  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2592  */
2593 local void send_all_trees(s, lcodes, dcodes, blcodes)
2594     deflate_state *s;
2595     int lcodes, dcodes, blcodes; /* number of codes for each tree */
2596 {
2597     int rank;                    /* index in bl_order */
2598
2599     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2600     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2601             "too many codes");
2602     Tracev((stderr, "\nbl counts: "));
2603     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2604     send_bits(s, dcodes-1,   5);
2605     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2606     for (rank = 0; rank < blcodes; rank++) {
2607         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2608         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2609     }
2610     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2611
2612     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2613     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2614
2615     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2616     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2617 }
2618
2619 /* ===========================================================================
2620  * Send a stored block
2621  */
2622 void _tr_stored_block(s, buf, stored_len, eof)
2623     deflate_state *s;
2624     charf *buf;       /* input block */
2625     ulg stored_len;   /* length of input block */
2626     int eof;          /* true if this is the last block for a file */
2627 {
2628     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
2629     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2630     s->compressed_len += (stored_len + 4) << 3;
2631
2632     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2633 }
2634
2635 /* Send just the `stored block' type code without any length bytes or data.
2636  */
2637 void _tr_stored_type_only(s)
2638     deflate_state *s;
2639 {
2640     send_bits(s, (STORED_BLOCK << 1), 3);
2641     bi_windup(s);
2642     s->compressed_len = (s->compressed_len + 3) & ~7L;
2643 }
2644
2645
2646 /* ===========================================================================
2647  * Send one empty static block to give enough lookahead for inflate.
2648  * This takes 10 bits, of which 7 may remain in the bit buffer.
2649  * The current inflate code requires 9 bits of lookahead. If the
2650  * last two codes for the previous block (real code plus EOB) were coded
2651  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2652  * the last real code. In this case we send two empty static blocks instead
2653  * of one. (There are no problems if the previous block is stored or fixed.)
2654  * To simplify the code, we assume the worst case of last real code encoded
2655  * on one bit only.
2656  */
2657 void _tr_align(s)
2658     deflate_state *s;
2659 {
2660     send_bits(s, STATIC_TREES<<1, 3);
2661     send_code(s, END_BLOCK, static_ltree);
2662     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2663     bi_flush(s);
2664     /* Of the 10 bits for the empty block, we have already sent
2665      * (10 - bi_valid) bits. The lookahead for the last real code (before
2666      * the EOB of the previous block) was thus at least one plus the length
2667      * of the EOB plus what we have just sent of the empty static block.
2668      */
2669     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
2670         send_bits(s, STATIC_TREES<<1, 3);
2671         send_code(s, END_BLOCK, static_ltree);
2672         s->compressed_len += 10L;
2673         bi_flush(s);
2674     }
2675     s->last_eob_len = 7;
2676 }
2677
2678 /* ===========================================================================
2679  * Determine the best encoding for the current block: dynamic trees, static
2680  * trees or store, and output the encoded block to the zip file. This function
2681  * returns the total compressed length for the file so far.
2682  */
2683 ulg _tr_flush_block(s, buf, stored_len, eof)
2684     deflate_state *s;
2685     charf *buf;       /* input block, or NULL if too old */
2686     ulg stored_len;   /* length of input block */
2687     int eof;          /* true if this is the last block for a file */
2688 {
2689     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2690     int max_blindex = 0;  /* index of last bit length code of non zero freq */
2691
2692     /* Build the Huffman trees unless a stored block is forced */
2693     if (s->level > 0) {
2694
2695          /* Check if the file is ascii or binary */
2696         if (s->data_type == Z_UNKNOWN) set_data_type(s);
2697
2698         /* Construct the literal and distance trees */
2699         build_tree(s, (tree_desc *)(&(s->l_desc)));
2700         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2701                 s->static_len));
2702
2703         build_tree(s, (tree_desc *)(&(s->d_desc)));
2704         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2705                 s->static_len));
2706         /* At this point, opt_len and static_len are the total bit lengths of
2707          * the compressed block data, excluding the tree representations.
2708          */
2709
2710         /* Build the bit length tree for the above two trees, and get the index
2711          * in bl_order of the last bit length code to send.
2712          */
2713         max_blindex = build_bl_tree(s);
2714
2715         /* Determine the best encoding. Compute first the block length in bytes*/
2716         opt_lenb = (s->opt_len+3+7)>>3;
2717         static_lenb = (s->static_len+3+7)>>3;
2718
2719         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2720                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2721                 s->last_lit));
2722
2723         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2724
2725     } else {
2726         Assert(buf != (char*)0, "lost buf");
2727         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
2728     }
2729
2730     /* If compression failed and this is the first and last block,
2731      * and if the .zip file can be seeked (to rewrite the local header),
2732      * the whole file is transformed into a stored file:
2733      */
2734 #ifdef STORED_FILE_OK
2735 #  ifdef FORCE_STORED_FILE
2736     if (eof && s->compressed_len == 0L) { /* force stored file */
2737 #  else
2738     if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
2739 #  endif
2740         /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2741         if (buf == (charf*)0) error ("block vanished");
2742
2743         copy_block(s, buf, (unsigned)stored_len, 0); /* without header */
2744         s->compressed_len = stored_len << 3;
2745         s->method = STORED;
2746     } else
2747 #endif /* STORED_FILE_OK */
2748
2749 #ifdef FORCE_STORED
2750     if (buf != (char*)0) { /* force stored block */
2751 #else
2752     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
2753                        /* 4: two words for the lengths */
2754 #endif
2755         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2756          * Otherwise we can't have processed more than WSIZE input bytes since
2757          * the last block flush, because compression would have been
2758          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2759          * transform a block into a stored block.
2760          */
2761         _tr_stored_block(s, buf, stored_len, eof);
2762
2763 #ifdef FORCE_STATIC
2764     } else if (static_lenb >= 0) { /* force static trees */
2765 #else
2766     } else if (static_lenb == opt_lenb) {
2767 #endif
2768         send_bits(s, (STATIC_TREES<<1)+eof, 3);
2769         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2770         s->compressed_len += 3 + s->static_len;
2771     } else {
2772         send_bits(s, (DYN_TREES<<1)+eof, 3);
2773         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2774                        max_blindex+1);
2775         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2776         s->compressed_len += 3 + s->opt_len;
2777     }
2778     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2779     init_block(s);
2780
2781     if (eof) {
2782         bi_windup(s);
2783         s->compressed_len += 7;  /* align on byte boundary */
2784     }
2785     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2786            s->compressed_len-7*eof));
2787
2788     return s->compressed_len >> 3;
2789 }
2790
2791 /* ===========================================================================
2792  * Save the match info and tally the frequency counts. Return true if
2793  * the current block must be flushed.
2794  */
2795 int _tr_tally (s, dist, lc)
2796     deflate_state *s;
2797     unsigned dist;  /* distance of matched string */
2798     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
2799 {
2800     s->d_buf[s->last_lit] = (ush)dist;
2801     s->l_buf[s->last_lit++] = (uch)lc;
2802     if (dist == 0) {
2803         /* lc is the unmatched char */
2804         s->dyn_ltree[lc].Freq++;
2805     } else {
2806         s->matches++;
2807         /* Here, lc is the match length - MIN_MATCH */
2808         dist--;             /* dist = match distance - 1 */
2809         Assert((ush)dist < (ush)MAX_DIST(s) &&
2810                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2811                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
2812
2813         s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2814         s->dyn_dtree[d_code(dist)].Freq++;
2815     }
2816
2817     /* Try to guess if it is profitable to stop the current block here */
2818     if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2819         /* Compute an upper bound for the compressed length */
2820         ulg out_length = (ulg)s->last_lit*8L;
2821         ulg in_length = (ulg)((long)s->strstart - s->block_start);
2822         int dcode;
2823         for (dcode = 0; dcode < D_CODES; dcode++) {
2824             out_length += (ulg)s->dyn_dtree[dcode].Freq *
2825                 (5L+extra_dbits[dcode]);
2826         }
2827         out_length >>= 3;
2828         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2829                s->last_lit, in_length, out_length,
2830                100L - out_length*100L/in_length));
2831         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2832     }
2833     return (s->last_lit == s->lit_bufsize-1);
2834     /* We avoid equality with lit_bufsize because of wraparound at 64K
2835      * on 16 bit machines and because stored blocks are restricted to
2836      * 64K-1 bytes.
2837      */
2838 }
2839
2840 /* ===========================================================================
2841  * Send the block data compressed using the given Huffman trees
2842  */
2843 local void compress_block(s, ltree, dtree)
2844     deflate_state *s;
2845     ct_data *ltree; /* literal tree */
2846     ct_data *dtree; /* distance tree */
2847 {
2848     unsigned dist;      /* distance of matched string */
2849     int lc;             /* match length or unmatched char (if dist == 0) */
2850     unsigned lx = 0;    /* running index in l_buf */
2851     unsigned code;      /* the code to send */
2852     int extra;          /* number of extra bits to send */
2853
2854     if (s->last_lit != 0) do {
2855         dist = s->d_buf[lx];
2856         lc = s->l_buf[lx++];
2857         if (dist == 0) {
2858             send_code(s, lc, ltree); /* send a literal byte */
2859             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2860         } else {
2861             /* Here, lc is the match length - MIN_MATCH */
2862             code = length_code[lc];
2863             send_code(s, code+LITERALS+1, ltree); /* send the length code */
2864             extra = extra_lbits[code];
2865             if (extra != 0) {
2866                 lc -= base_length[code];
2867                 send_bits(s, lc, extra);       /* send the extra length bits */
2868             }
2869             dist--; /* dist is now the match distance - 1 */
2870             code = d_code(dist);
2871             Assert (code < D_CODES, "bad d_code");
2872
2873             send_code(s, code, dtree);       /* send the distance code */
2874             extra = extra_dbits[code];
2875             if (extra != 0) {
2876                 dist -= base_dist[code];
2877                 send_bits(s, dist, extra);   /* send the extra distance bits */
2878             }
2879         } /* literal or match pair ? */
2880
2881         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2882         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2883
2884     } while (lx < s->last_lit);
2885
2886     send_code(s, END_BLOCK, ltree);
2887     s->last_eob_len = ltree[END_BLOCK].Len;
2888 }
2889
2890 /* ===========================================================================
2891  * Set the data type to ASCII or BINARY, using a crude approximation:
2892  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2893  * IN assertion: the fields freq of dyn_ltree are set and the total of all
2894  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2895  */
2896 local void set_data_type(s)
2897     deflate_state *s;
2898 {
2899     int n = 0;
2900     unsigned ascii_freq = 0;
2901     unsigned bin_freq = 0;
2902     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
2903     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
2904     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2905     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
2906 }
2907
2908 /* ===========================================================================
2909  * Reverse the first len bits of a code, using straightforward code (a faster
2910  * method would use a table)
2911  * IN assertion: 1 <= len <= 15
2912  */
2913 local unsigned bi_reverse(code, len)
2914     unsigned code; /* the value to invert */
2915     int len;       /* its bit length */
2916 {
2917     register unsigned res = 0;
2918     do {
2919         res |= code & 1;
2920         code >>= 1, res <<= 1;
2921     } while (--len > 0);
2922     return res >> 1;
2923 }
2924
2925 /* ===========================================================================
2926  * Flush the bit buffer, keeping at most 7 bits in it.
2927  */
2928 local void bi_flush(s)
2929     deflate_state *s;
2930 {
2931     if (s->bi_valid == 16) {
2932         put_short(s, s->bi_buf);
2933         s->bi_buf = 0;
2934         s->bi_valid = 0;
2935     } else if (s->bi_valid >= 8) {
2936         put_byte(s, (Byte)s->bi_buf);
2937         s->bi_buf >>= 8;
2938         s->bi_valid -= 8;
2939     }
2940 }
2941
2942 /* ===========================================================================
2943  * Flush the bit buffer and align the output on a byte boundary
2944  */
2945 local void bi_windup(s)
2946     deflate_state *s;
2947 {
2948     if (s->bi_valid > 8) {
2949         put_short(s, s->bi_buf);
2950     } else if (s->bi_valid > 0) {
2951         put_byte(s, (Byte)s->bi_buf);
2952     }
2953     s->bi_buf = 0;
2954     s->bi_valid = 0;
2955 #ifdef DEBUG_ZLIB
2956     s->bits_sent = (s->bits_sent+7) & ~7;
2957 #endif
2958 }
2959
2960 /* ===========================================================================
2961  * Copy a stored block, storing first the length and its
2962  * one's complement if requested.
2963  */
2964 local void copy_block(s, buf, len, header)
2965     deflate_state *s;
2966     charf    *buf;    /* the input data */
2967     unsigned len;     /* its length */
2968     int      header;  /* true if block header must be written */
2969 {
2970     bi_windup(s);        /* align on byte boundary */
2971     s->last_eob_len = 8; /* enough lookahead for inflate */
2972
2973     if (header) {
2974         put_short(s, (ush)len);   
2975         put_short(s, (ush)~len);
2976 #ifdef DEBUG_ZLIB
2977         s->bits_sent += 2*16;
2978 #endif
2979     }
2980 #ifdef DEBUG_ZLIB
2981     s->bits_sent += (ulg)len<<3;
2982 #endif
2983     /* bundle up the put_byte(s, *buf++) calls */
2984     zmemcpy(&s->pending_buf[s->pending], buf, len);
2985     s->pending += len;
2986 }
2987 /* --- trees.c */
2988
2989 /* +++ inflate.c */
2990 /* inflate.c -- zlib interface to inflate modules
2991  * Copyright (C) 1995-1996 Mark Adler
2992  * For conditions of distribution and use, see copyright notice in zlib.h 
2993  */
2994
2995 /* #include "zutil.h" */
2996
2997 /* +++ infblock.h */
2998 /* infblock.h -- header to use infblock.c
2999  * Copyright (C) 1995-1996 Mark Adler
3000  * For conditions of distribution and use, see copyright notice in zlib.h 
3001  */
3002
3003 /* WARNING: this file should *not* be used by applications. It is
3004    part of the implementation of the compression library and is
3005    subject to change. Applications should only use zlib.h.
3006  */
3007
3008 struct inflate_blocks_state;
3009 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3010
3011 extern inflate_blocks_statef * inflate_blocks_new OF((
3012     z_streamp z,
3013     check_func c,               /* check function */
3014     uInt w));                   /* window size */
3015
3016 extern int inflate_blocks OF((
3017     inflate_blocks_statef *,
3018     z_streamp ,
3019     int));                      /* initial return code */
3020
3021 extern void inflate_blocks_reset OF((
3022     inflate_blocks_statef *,
3023     z_streamp ,
3024     uLongf *));                  /* check value on output */
3025
3026 extern int inflate_blocks_free OF((
3027     inflate_blocks_statef *,
3028     z_streamp ,
3029     uLongf *));                  /* check value on output */
3030
3031 extern void inflate_set_dictionary OF((
3032     inflate_blocks_statef *s,
3033     const Bytef *d,  /* dictionary */
3034     uInt  n));       /* dictionary length */
3035
3036 extern int inflate_addhistory OF((
3037     inflate_blocks_statef *,
3038     z_streamp));
3039
3040 extern int inflate_packet_flush OF((
3041     inflate_blocks_statef *));
3042 /* --- infblock.h */
3043
3044 #ifndef NO_DUMMY_DECL
3045 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3046 #endif
3047
3048 /* inflate private state */
3049 struct internal_state {
3050
3051   /* mode */
3052   enum {
3053       METHOD,   /* waiting for method byte */
3054       FLAG,     /* waiting for flag byte */
3055       DICT4,    /* four dictionary check bytes to go */
3056       DICT3,    /* three dictionary check bytes to go */
3057       DICT2,    /* two dictionary check bytes to go */
3058       DICT1,    /* one dictionary check byte to go */
3059       DICT0,    /* waiting for inflateSetDictionary */
3060       BLOCKS,   /* decompressing blocks */
3061       CHECK4,   /* four check bytes to go */
3062       CHECK3,   /* three check bytes to go */
3063       CHECK2,   /* two check bytes to go */
3064       CHECK1,   /* one check byte to go */
3065       DONE,     /* finished check, done */
3066       BAD}      /* got an error--stay here */
3067     mode;               /* current inflate mode */
3068
3069   /* mode dependent information */
3070   union {
3071     uInt method;        /* if FLAGS, method byte */
3072     struct {
3073       uLong was;                /* computed check value */
3074       uLong need;               /* stream check value */
3075     } check;            /* if CHECK, check values to compare */
3076     uInt marker;        /* if BAD, inflateSync's marker bytes count */
3077   } sub;        /* submode */
3078
3079   /* mode independent information */
3080   int  nowrap;          /* flag for no wrapper */
3081   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
3082   inflate_blocks_statef 
3083     *blocks;            /* current inflate_blocks state */
3084
3085 };
3086
3087
3088 int inflateReset(z)
3089 z_streamp z;
3090 {
3091   uLong c;
3092
3093   if (z == Z_NULL || z->state == Z_NULL)
3094     return Z_STREAM_ERROR;
3095   z->total_in = z->total_out = 0;
3096   z->msg = Z_NULL;
3097   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3098   inflate_blocks_reset(z->state->blocks, z, &c);
3099   Trace((stderr, "inflate: reset\n"));
3100   return Z_OK;
3101 }
3102
3103
3104 int inflateEnd(z)
3105 z_streamp z;
3106 {
3107   uLong c;
3108
3109   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3110     return Z_STREAM_ERROR;
3111   if (z->state->blocks != Z_NULL)
3112     inflate_blocks_free(z->state->blocks, z, &c);
3113   ZFREE(z, z->state);
3114   z->state = Z_NULL;
3115   Trace((stderr, "inflate: end\n"));
3116   return Z_OK;
3117 }
3118
3119
3120 int inflateInit2_(z, w, version, stream_size)
3121 z_streamp z;
3122 int w;
3123 const char *version;
3124 int stream_size;
3125 {
3126   if (version == Z_NULL || version[0] != ZLIB_VERSION[0] ||
3127       stream_size != sizeof(z_stream))
3128       return Z_VERSION_ERROR;
3129
3130   /* initialize state */
3131   if (z == Z_NULL)
3132     return Z_STREAM_ERROR;
3133   z->msg = Z_NULL;
3134 #ifndef NO_ZCFUNCS
3135   if (z->zalloc == Z_NULL)
3136   {
3137     z->zalloc = zcalloc;
3138     z->opaque = (voidpf)0;
3139   }
3140   if (z->zfree == Z_NULL) z->zfree = zcfree;
3141 #endif
3142   if ((z->state = (struct internal_state FAR *)
3143        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3144     return Z_MEM_ERROR;
3145   z->state->blocks = Z_NULL;
3146
3147   /* handle undocumented nowrap option (no zlib header or check) */
3148   z->state->nowrap = 0;
3149   if (w < 0)
3150   {
3151     w = - w;
3152     z->state->nowrap = 1;
3153   }
3154
3155   /* set window size */
3156   if (w < 8 || w > 15)
3157   {
3158     inflateEnd(z);
3159     return Z_STREAM_ERROR;
3160   }
3161   z->state->wbits = (uInt)w;
3162
3163   /* create inflate_blocks state */
3164   if ((z->state->blocks =
3165       inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3166       == Z_NULL)
3167   {
3168     inflateEnd(z);
3169     return Z_MEM_ERROR;
3170   }
3171   Trace((stderr, "inflate: allocated\n"));
3172
3173   /* reset state */
3174   inflateReset(z);
3175   return Z_OK;
3176 }
3177
3178
3179 int inflateInit_(z, version, stream_size)
3180 z_streamp z;
3181 const char *version;
3182 int stream_size;
3183 {
3184   return inflateInit2_(z, DEF_WBITS, version, stream_size);
3185 }
3186
3187
3188 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3189 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3190
3191 int inflate(z, f)
3192 z_streamp z;
3193 int f;
3194 {
3195   int r;
3196   uInt b;
3197
3198   if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL || f < 0)
3199     return Z_STREAM_ERROR;
3200   r = Z_BUF_ERROR;
3201   while (1) switch (z->state->mode)
3202   {
3203     case METHOD:
3204       NEEDBYTE
3205       if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3206       {
3207         z->state->mode = BAD;
3208         z->msg = (char*)"unknown compression method";
3209         z->state->sub.marker = 5;       /* can't try inflateSync */
3210         break;
3211       }
3212       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3213       {
3214         z->state->mode = BAD;
3215         z->msg = (char*)"invalid window size";
3216         z->state->sub.marker = 5;       /* can't try inflateSync */
3217         break;
3218       }
3219       z->state->mode = FLAG;
3220     case FLAG:
3221       NEEDBYTE
3222       b = NEXTBYTE;
3223       if (((z->state->sub.method << 8) + b) % 31)
3224       {
3225         z->state->mode = BAD;
3226         z->msg = (char*)"incorrect header check";
3227         z->state->sub.marker = 5;       /* can't try inflateSync */
3228         break;
3229       }
3230       Trace((stderr, "inflate: zlib header ok\n"));
3231       if (!(b & PRESET_DICT))
3232       {
3233         z->state->mode = BLOCKS;
3234         break;
3235       }
3236       z->state->mode = DICT4;
3237     case DICT4:
3238       NEEDBYTE
3239       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3240       z->state->mode = DICT3;
3241     case DICT3:
3242       NEEDBYTE
3243       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3244       z->state->mode = DICT2;
3245     case DICT2:
3246       NEEDBYTE
3247       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3248       z->state->mode = DICT1;
3249     case DICT1:
3250       NEEDBYTE
3251       z->state->sub.check.need += (uLong)NEXTBYTE;
3252       z->adler = z->state->sub.check.need;
3253       z->state->mode = DICT0;
3254       return Z_NEED_DICT;
3255     case DICT0:
3256       z->state->mode = BAD;
3257       z->msg = (char*)"need dictionary";
3258       z->state->sub.marker = 0;       /* can try inflateSync */
3259       return Z_STREAM_ERROR;
3260     case BLOCKS:
3261       r = inflate_blocks(z->state->blocks, z, r);
3262       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3263           r = inflate_packet_flush(z->state->blocks);
3264       if (r == Z_DATA_ERROR)
3265       {
3266         z->state->mode = BAD;
3267         z->state->sub.marker = 0;       /* can try inflateSync */
3268         break;
3269       }
3270       if (r != Z_STREAM_END)
3271         return r;
3272       r = Z_OK;
3273       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3274       if (z->state->nowrap)
3275       {
3276         z->state->mode = DONE;
3277         break;
3278       }
3279       z->state->mode = CHECK4;
3280     case CHECK4:
3281       NEEDBYTE
3282       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3283       z->state->mode = CHECK3;
3284     case CHECK3:
3285       NEEDBYTE
3286       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3287       z->state->mode = CHECK2;
3288     case CHECK2:
3289       NEEDBYTE
3290       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3291       z->state->mode = CHECK1;
3292     case CHECK1:
3293       NEEDBYTE
3294       z->state->sub.check.need += (uLong)NEXTBYTE;
3295
3296       if (z->state->sub.check.was != z->state->sub.check.need)
3297       {
3298         z->state->mode = BAD;
3299         z->msg = (char*)"incorrect data check";
3300         z->state->sub.marker = 5;       /* can't try inflateSync */
3301         break;
3302       }
3303       Trace((stderr, "inflate: zlib check ok\n"));
3304       z->state->mode = DONE;
3305     case DONE:
3306       return Z_STREAM_END;
3307     case BAD:
3308       return Z_DATA_ERROR;
3309     default:
3310       return Z_STREAM_ERROR;
3311   }
3312
3313  empty:
3314   if (f != Z_PACKET_FLUSH)
3315     return r;
3316   z->state->mode = BAD;
3317   z->msg = (char *)"need more for packet flush";
3318   z->state->sub.marker = 0;       /* can try inflateSync */
3319   return Z_DATA_ERROR;
3320 }
3321
3322
3323 int inflateSetDictionary(z, dictionary, dictLength)
3324 z_streamp z;
3325 const Bytef *dictionary;
3326 uInt  dictLength;
3327 {
3328   uInt length = dictLength;
3329
3330   if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3331     return Z_STREAM_ERROR;
3332
3333   if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3334   z->adler = 1L;
3335
3336   if (length >= ((uInt)1<<z->state->wbits))
3337   {
3338     length = (1<<z->state->wbits)-1;
3339     dictionary += dictLength - length;
3340   }
3341   inflate_set_dictionary(z->state->blocks, dictionary, length);
3342   z->state->mode = BLOCKS;
3343   return Z_OK;
3344 }
3345
3346 /*
3347  * This subroutine adds the data at next_in/avail_in to the output history
3348  * without performing any output.  The output buffer must be "caught up";
3349  * i.e. no pending output (hence s->read equals s->write), and the state must
3350  * be BLOCKS (i.e. we should be willing to see the start of a series of
3351  * BLOCKS).  On exit, the output will also be caught up, and the checksum
3352  * will have been updated if need be.
3353  */
3354
3355 int inflateIncomp(z)
3356 z_stream *z;
3357 {
3358     if (z->state->mode != BLOCKS)
3359         return Z_DATA_ERROR;
3360     return inflate_addhistory(z->state->blocks, z);
3361 }
3362
3363
3364 int inflateSync(z)
3365 z_streamp z;
3366 {
3367   uInt n;       /* number of bytes to look at */
3368   Bytef *p;     /* pointer to bytes */
3369   uInt m;       /* number of marker bytes found in a row */
3370   uLong r, w;   /* temporaries to save total_in and total_out */
3371
3372   /* set up */
3373   if (z == Z_NULL || z->state == Z_NULL)
3374     return Z_STREAM_ERROR;
3375   if (z->state->mode != BAD)
3376   {
3377     z->state->mode = BAD;
3378     z->state->sub.marker = 0;
3379   }
3380   if ((n = z->avail_in) == 0)
3381     return Z_BUF_ERROR;
3382   p = z->next_in;
3383   m = z->state->sub.marker;
3384
3385   /* search */
3386   while (n && m < 4)
3387   {
3388     if (*p == (Byte)(m < 2 ? 0 : 0xff))
3389       m++;
3390     else if (*p)
3391       m = 0;
3392     else
3393       m = 4 - m;
3394     p++, n--;
3395   }
3396
3397   /* restore */
3398   z->total_in += p - z->next_in;
3399   z->next_in = p;
3400   z->avail_in = n;
3401   z->state->sub.marker = m;
3402
3403   /* return no joy or set up to restart on a new block */
3404   if (m != 4)
3405     return Z_DATA_ERROR;
3406   r = z->total_in;  w = z->total_out;
3407   inflateReset(z);
3408   z->total_in = r;  z->total_out = w;
3409   z->state->mode = BLOCKS;
3410   return Z_OK;
3411 }
3412
3413 #undef NEEDBYTE
3414 #undef NEXTBYTE
3415 /* --- inflate.c */
3416
3417 /* +++ infblock.c */
3418 /* infblock.c -- interpret and process block types to last block
3419  * Copyright (C) 1995-1996 Mark Adler
3420  * For conditions of distribution and use, see copyright notice in zlib.h 
3421  */
3422
3423 /* #include "zutil.h" */
3424 /* #include "infblock.h" */
3425
3426 /* +++ inftrees.h */
3427 /* inftrees.h -- header to use inftrees.c
3428  * Copyright (C) 1995-1996 Mark Adler
3429  * For conditions of distribution and use, see copyright notice in zlib.h 
3430  */
3431
3432 /* WARNING: this file should *not* be used by applications. It is
3433    part of the implementation of the compression library and is
3434    subject to change. Applications should only use zlib.h.
3435  */
3436
3437 /* Huffman code lookup table entry--this entry is four bytes for machines
3438    that have 16-bit pointers (e.g. PC's in the small or medium model). */
3439
3440 typedef struct inflate_huft_s FAR inflate_huft;
3441
3442 struct inflate_huft_s {
3443   union {
3444     struct {
3445       Byte Exop;        /* number of extra bits or operation */
3446       Byte Bits;        /* number of bits in this code or subcode */
3447     } what;
3448     Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
3449   } word;               /*  16-bit, 8 bytes for 32-bit machines) */
3450   union {
3451     uInt Base;          /* literal, length base, or distance base */
3452     inflate_huft *Next; /* pointer to next level of table */
3453   } more;
3454 };
3455
3456 #ifdef DEBUG_ZLIB
3457   extern uInt inflate_hufts;
3458 #endif
3459
3460 extern int inflate_trees_bits OF((
3461     uIntf *,                    /* 19 code lengths */
3462     uIntf *,                    /* bits tree desired/actual depth */
3463     inflate_huft * FAR *,       /* bits tree result */
3464     z_streamp ));               /* for zalloc, zfree functions */
3465
3466 extern int inflate_trees_dynamic OF((
3467     uInt,                       /* number of literal/length codes */
3468     uInt,                       /* number of distance codes */
3469     uIntf *,                    /* that many (total) code lengths */
3470     uIntf *,                    /* literal desired/actual bit depth */
3471     uIntf *,                    /* distance desired/actual bit depth */
3472     inflate_huft * FAR *,       /* literal/length tree result */
3473     inflate_huft * FAR *,       /* distance tree result */
3474     z_streamp ));               /* for zalloc, zfree functions */
3475
3476 extern int inflate_trees_fixed OF((
3477     uIntf *,                    /* literal desired/actual bit depth */
3478     uIntf *,                    /* distance desired/actual bit depth */
3479     inflate_huft * FAR *,       /* literal/length tree result */
3480     inflate_huft * FAR *));     /* distance tree result */
3481
3482 extern int inflate_trees_free OF((
3483     inflate_huft *,             /* tables to free */
3484     z_streamp ));               /* for zfree function */
3485
3486 /* --- inftrees.h */
3487
3488 /* +++ infcodes.h */
3489 /* infcodes.h -- header to use infcodes.c
3490  * Copyright (C) 1995-1996 Mark Adler
3491  * For conditions of distribution and use, see copyright notice in zlib.h 
3492  */
3493
3494 /* WARNING: this file should *not* be used by applications. It is
3495    part of the implementation of the compression library and is
3496    subject to change. Applications should only use zlib.h.
3497  */
3498
3499 struct inflate_codes_state;
3500 typedef struct inflate_codes_state FAR inflate_codes_statef;
3501
3502 extern inflate_codes_statef *inflate_codes_new OF((
3503     uInt, uInt,
3504     inflate_huft *, inflate_huft *,
3505     z_streamp ));
3506
3507 extern int inflate_codes OF((
3508     inflate_blocks_statef *,
3509     z_streamp ,
3510     int));
3511
3512 extern void inflate_codes_free OF((
3513     inflate_codes_statef *,
3514     z_streamp ));
3515
3516 /* --- infcodes.h */
3517
3518 /* +++ infutil.h */
3519 /* infutil.h -- types and macros common to blocks and codes
3520  * Copyright (C) 1995-1996 Mark Adler
3521  * For conditions of distribution and use, see copyright notice in zlib.h 
3522  */
3523
3524 /* WARNING: this file should *not* be used by applications. It is
3525    part of the implementation of the compression library and is
3526    subject to change. Applications should only use zlib.h.
3527  */
3528
3529 #ifndef _INFUTIL_H
3530 #define _INFUTIL_H
3531
3532 typedef enum {
3533       TYPE,     /* get type bits (3, including end bit) */
3534       LENS,     /* get lengths for stored */
3535       STORED,   /* processing stored block */
3536       TABLE,    /* get table lengths */
3537       BTREE,    /* get bit lengths tree for a dynamic block */
3538       DTREE,    /* get length, distance trees for a dynamic block */
3539       CODES,    /* processing fixed or dynamic block */
3540       DRY,      /* output remaining window bytes */
3541       DONEB,    /* finished last block, done */
3542       BADB}     /* got a data error--stuck here */
3543 inflate_block_mode;
3544
3545 /* inflate blocks semi-private state */
3546 struct inflate_blocks_state {
3547
3548   /* mode */
3549   inflate_block_mode  mode;     /* current inflate_block mode */
3550
3551   /* mode dependent information */
3552   union {
3553     uInt left;          /* if STORED, bytes left to copy */
3554     struct {
3555       uInt table;               /* table lengths (14 bits) */
3556       uInt index;               /* index into blens (or border) */
3557       uIntf *blens;             /* bit lengths of codes */
3558       uInt bb;                  /* bit length tree depth */
3559       inflate_huft *tb;         /* bit length decoding tree */
3560     } trees;            /* if DTREE, decoding info for trees */
3561     struct {
3562       inflate_huft *tl;
3563       inflate_huft *td;         /* trees to free */
3564       inflate_codes_statef 
3565          *codes;
3566     } decode;           /* if CODES, current state */
3567   } sub;                /* submode */
3568   uInt last;            /* true if this block is the last block */
3569
3570   /* mode independent information */
3571   uInt bitk;            /* bits in bit buffer */
3572   uLong bitb;           /* bit buffer */
3573   Bytef *window;        /* sliding window */
3574   Bytef *end;           /* one byte after sliding window */
3575   Bytef *read;          /* window read pointer */
3576   Bytef *write;         /* window write pointer */
3577   check_func checkfn;   /* check function */
3578   uLong check;          /* check on output */
3579
3580 };
3581
3582
3583 /* defines for inflate input/output */
3584 /*   update pointers and return */
3585 #define UPDBITS {s->bitb=b;s->bitk=k;}
3586 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3587 #define UPDOUT {s->write=q;}
3588 #define UPDATE {UPDBITS UPDIN UPDOUT}
3589 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3590 /*   get bytes and bits */
3591 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3592 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3593 #define NEXTBYTE (n--,*p++)
3594 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3595 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3596 /*   output bytes */
3597 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3598 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3599 #define WWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3600 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3601 #define NEEDOUT {if(m==0){WWRAP if(m==0){FLUSH WWRAP if(m==0) LEAVE}}r=Z_OK;}
3602 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3603 /*   load local pointers */
3604 #define LOAD {LOADIN LOADOUT}
3605
3606 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3607 extern uInt inflate_mask[17];
3608
3609 /* copy as much as possible from the sliding window to the output area */
3610 extern int inflate_flush OF((
3611     inflate_blocks_statef *,
3612     z_streamp ,
3613     int));
3614
3615 #ifndef NO_DUMMY_DECL
3616 struct internal_state      {int dummy;}; /* for buggy compilers */
3617 #endif
3618
3619 #endif
3620 /* --- infutil.h */
3621
3622 #ifndef NO_DUMMY_DECL
3623 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3624 #endif
3625
3626 /* Table for deflate from PKZIP's appnote.txt. */
3627 local const uInt border[] = { /* Order of the bit length code lengths */
3628         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3629
3630 /*
3631    Notes beyond the 1.93a appnote.txt:
3632
3633    1. Distance pointers never point before the beginning of the output
3634       stream.
3635    2. Distance pointers can point back across blocks, up to 32k away.
3636    3. There is an implied maximum of 7 bits for the bit length table and
3637       15 bits for the actual data.
3638    4. If only one code exists, then it is encoded using one bit.  (Zero
3639       would be more efficient, but perhaps a little confusing.)  If two
3640       codes exist, they are coded using one bit each (0 and 1).
3641    5. There is no way of sending zero distance codes--a dummy must be
3642       sent if there are none.  (History: a pre 2.0 version of PKZIP would
3643       store blocks with no distance codes, but this was discovered to be
3644       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
3645       zero distance codes, which is sent as one code of zero bits in
3646       length.
3647    6. There are up to 286 literal/length codes.  Code 256 represents the
3648       end-of-block.  Note however that the static length tree defines
3649       288 codes just to fill out the Huffman codes.  Codes 286 and 287
3650       cannot be used though, since there is no length base or extra bits
3651       defined for them.  Similarily, there are up to 30 distance codes.
3652       However, static trees define 32 codes (all 5 bits) to fill out the
3653       Huffman codes, but the last two had better not show up in the data.
3654    7. Unzip can check dynamic Huffman blocks for complete code sets.
3655       The exception is that a single code would not be complete (see #4).
3656    8. The five bits following the block type is really the number of
3657       literal codes sent minus 257.
3658    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3659       (1+6+6).  Therefore, to output three times the length, you output
3660       three codes (1+1+1), whereas to output four times the same length,
3661       you only need two codes (1+3).  Hmm.
3662   10. In the tree reconstruction algorithm, Code = Code + Increment
3663       only if BitLength(i) is not zero.  (Pretty obvious.)
3664   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
3665   12. Note: length code 284 can represent 227-258, but length code 285
3666       really is 258.  The last length deserves its own, short code
3667       since it gets used a lot in very redundant files.  The length
3668       258 is special since 258 - 3 (the min match length) is 255.
3669   13. The literal/length and distance code bit lengths are read as a
3670       single stream of lengths.  It is possible (and advantageous) for
3671       a repeat code (16, 17, or 18) to go across the boundary between
3672       the two sets of lengths.
3673  */
3674
3675
3676 void inflate_blocks_reset(s, z, c)
3677 inflate_blocks_statef *s;
3678 z_streamp z;
3679 uLongf *c;
3680 {
3681   if (s->checkfn != Z_NULL)
3682     *c = s->check;
3683   if (s->mode == BTREE || s->mode == DTREE)
3684     ZFREE(z, s->sub.trees.blens);
3685   if (s->mode == CODES)
3686   {
3687     inflate_codes_free(s->sub.decode.codes, z);
3688     inflate_trees_free(s->sub.decode.td, z);
3689     inflate_trees_free(s->sub.decode.tl, z);
3690   }
3691   s->mode = TYPE;
3692   s->bitk = 0;
3693   s->bitb = 0;
3694   s->read = s->write = s->window;
3695   if (s->checkfn != Z_NULL)
3696     z->adler = s->check = (*s->checkfn)(0L, Z_NULL, 0);
3697   Trace((stderr, "inflate:   blocks reset\n"));
3698 }
3699
3700
3701 inflate_blocks_statef *inflate_blocks_new(z, c, w)
3702 z_streamp z;
3703 check_func c;
3704 uInt w;
3705 {
3706   inflate_blocks_statef *s;
3707
3708   if ((s = (inflate_blocks_statef *)ZALLOC
3709        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3710     return s;
3711   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3712   {
3713     ZFREE(z, s);
3714     return Z_NULL;
3715   }
3716   s->end = s->window + w;
3717   s->checkfn = c;
3718   s->mode = TYPE;
3719   Trace((stderr, "inflate:   blocks allocated\n"));
3720   inflate_blocks_reset(s, z, &s->check);
3721   return s;
3722 }
3723
3724
3725 #ifdef DEBUG_ZLIB
3726   extern uInt inflate_hufts;
3727 #endif
3728 int inflate_blocks(s, z, r)
3729 inflate_blocks_statef *s;
3730 z_streamp z;
3731 int r;
3732 {
3733   uInt t;               /* temporary storage */
3734   uLong b;              /* bit buffer */
3735   uInt k;               /* bits in bit buffer */
3736   Bytef *p;             /* input data pointer */
3737   uInt n;               /* bytes available there */
3738   Bytef *q;             /* output window write pointer */
3739   uInt m;               /* bytes to end of window or read pointer */
3740
3741   /* copy input/output information to locals (UPDATE macro restores) */
3742   LOAD
3743
3744   /* process input based on current state */
3745   while (1) switch (s->mode)
3746   {
3747     case TYPE:
3748       NEEDBITS(3)
3749       t = (uInt)b & 7;
3750       s->last = t & 1;
3751       switch (t >> 1)
3752       {
3753         case 0:                         /* stored */
3754           Trace((stderr, "inflate:     stored block%s\n",
3755                  s->last ? " (last)" : ""));
3756           DUMPBITS(3)
3757           t = k & 7;                    /* go to byte boundary */
3758           DUMPBITS(t)
3759           s->mode = LENS;               /* get length of stored block */
3760           break;
3761         case 1:                         /* fixed */
3762           Trace((stderr, "inflate:     fixed codes block%s\n",
3763                  s->last ? " (last)" : ""));
3764           {
3765             uInt bl, bd;
3766             inflate_huft *tl, *td;
3767
3768             inflate_trees_fixed(&bl, &bd, &tl, &td);
3769             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3770             if (s->sub.decode.codes == Z_NULL)
3771             {
3772               r = Z_MEM_ERROR;
3773               LEAVE
3774             }
3775             s->sub.decode.tl = Z_NULL;  /* don't try to free these */
3776             s->sub.decode.td = Z_NULL;
3777           }
3778           DUMPBITS(3)
3779           s->mode = CODES;
3780           break;
3781         case 2:                         /* dynamic */
3782           Trace((stderr, "inflate:     dynamic codes block%s\n",
3783                  s->last ? " (last)" : ""));
3784           DUMPBITS(3)
3785           s->mode = TABLE;
3786           break;
3787         case 3:                         /* illegal */
3788           DUMPBITS(3)
3789           s->mode = BADB;
3790           z->msg = (char*)"invalid block type";
3791           r = Z_DATA_ERROR;
3792           LEAVE
3793       }
3794       break;
3795     case LENS:
3796       NEEDBITS(32)
3797       if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
3798       {
3799         s->mode = BADB;
3800         z->msg = (char*)"invalid stored block lengths";
3801         r = Z_DATA_ERROR;
3802         LEAVE
3803       }
3804       s->sub.left = (uInt)b & 0xffff;
3805       b = k = 0;                      /* dump bits */
3806       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
3807       s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
3808       break;
3809     case STORED:
3810       if (n == 0)
3811         LEAVE
3812       NEEDOUT
3813       t = s->sub.left;
3814       if (t > n) t = n;
3815       if (t > m) t = m;
3816       zmemcpy(q, p, t);
3817       p += t;  n -= t;
3818       q += t;  m -= t;
3819       if ((s->sub.left -= t) != 0)
3820         break;
3821       Tracev((stderr, "inflate:       stored end, %lu total out\n",
3822               z->total_out + (q >= s->read ? q - s->read :
3823               (s->end - s->read) + (q - s->window))));
3824       s->mode = s->last ? DRY : TYPE;
3825       break;
3826     case TABLE:
3827       NEEDBITS(14)
3828       s->sub.trees.table = t = (uInt)b & 0x3fff;
3829 #ifndef PKZIP_BUG_WORKAROUND
3830       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3831       {
3832         s->mode = BADB;
3833         z->msg = (char*)"too many length or distance symbols";
3834         r = Z_DATA_ERROR;
3835         LEAVE
3836       }
3837 #endif
3838       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3839       if (t < 19)
3840         t = 19;
3841       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3842       {
3843         r = Z_MEM_ERROR;
3844         LEAVE
3845       }
3846       DUMPBITS(14)
3847       s->sub.trees.index = 0;
3848       Tracev((stderr, "inflate:       table sizes ok\n"));
3849       s->mode = BTREE;
3850     case BTREE:
3851       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3852       {
3853         NEEDBITS(3)
3854         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3855         DUMPBITS(3)
3856       }
3857       while (s->sub.trees.index < 19)
3858         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3859       s->sub.trees.bb = 7;
3860       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3861                              &s->sub.trees.tb, z);
3862       if (t != Z_OK)
3863       {
3864         ZFREE(z, s->sub.trees.blens);
3865         r = t;
3866         if (r == Z_DATA_ERROR)
3867           s->mode = BADB;
3868         LEAVE
3869       }
3870       s->sub.trees.index = 0;
3871       Tracev((stderr, "inflate:       bits tree ok\n"));
3872       s->mode = DTREE;
3873     case DTREE:
3874       while (t = s->sub.trees.table,
3875              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3876       {
3877         inflate_huft *h;
3878         uInt i, j, c;
3879
3880         t = s->sub.trees.bb;
3881         NEEDBITS(t)
3882         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3883         t = h->word.what.Bits;
3884         c = h->more.Base;
3885         if (c < 16)
3886         {
3887           DUMPBITS(t)
3888           s->sub.trees.blens[s->sub.trees.index++] = c;
3889         }
3890         else /* c == 16..18 */
3891         {
3892           i = c == 18 ? 7 : c - 14;
3893           j = c == 18 ? 11 : 3;
3894           NEEDBITS(t + i)
3895           DUMPBITS(t)
3896           j += (uInt)b & inflate_mask[i];
3897           DUMPBITS(i)
3898           i = s->sub.trees.index;
3899           t = s->sub.trees.table;
3900           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3901               (c == 16 && i < 1))
3902           {
3903             inflate_trees_free(s->sub.trees.tb, z);
3904             ZFREE(z, s->sub.trees.blens);
3905             s->mode = BADB;
3906             z->msg = (char*)"invalid bit length repeat";
3907             r = Z_DATA_ERROR;
3908             LEAVE
3909           }
3910           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3911           do {
3912             s->sub.trees.blens[i++] = c;
3913           } while (--j);
3914           s->sub.trees.index = i;
3915         }
3916       }
3917       inflate_trees_free(s->sub.trees.tb, z);
3918       s->sub.trees.tb = Z_NULL;
3919       {
3920         uInt bl, bd;
3921         inflate_huft *tl, *td;
3922         inflate_codes_statef *c;
3923
3924         bl = 9;         /* must be <= 9 for lookahead assumptions */
3925         bd = 6;         /* must be <= 9 for lookahead assumptions */
3926         t = s->sub.trees.table;
3927 #ifdef DEBUG_ZLIB
3928       inflate_hufts = 0;
3929 #endif
3930         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3931                                   s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3932         ZFREE(z, s->sub.trees.blens);
3933         if (t != Z_OK)
3934         {
3935           if (t == (uInt)Z_DATA_ERROR)
3936             s->mode = BADB;
3937           r = t;
3938           LEAVE
3939         }
3940         Tracev((stderr, "inflate:       trees ok, %d * %d bytes used\n",
3941               inflate_hufts, sizeof(inflate_huft)));
3942         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3943         {
3944           inflate_trees_free(td, z);
3945           inflate_trees_free(tl, z);
3946           r = Z_MEM_ERROR;
3947           LEAVE
3948         }
3949         s->sub.decode.codes = c;
3950         s->sub.decode.tl = tl;
3951         s->sub.decode.td = td;
3952       }
3953       s->mode = CODES;
3954     case CODES:
3955       UPDATE
3956       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3957         return inflate_flush(s, z, r);
3958       r = Z_OK;
3959       inflate_codes_free(s->sub.decode.codes, z);
3960       inflate_trees_free(s->sub.decode.td, z);
3961       inflate_trees_free(s->sub.decode.tl, z);
3962       LOAD
3963       Tracev((stderr, "inflate:       codes end, %lu total out\n",
3964               z->total_out + (q >= s->read ? q - s->read :
3965               (s->end - s->read) + (q - s->window))));
3966       if (!s->last)
3967       {
3968         s->mode = TYPE;
3969         break;
3970       }
3971       if (k > 7)              /* return unused byte, if any */
3972       {
3973         Assert(k < 16, "inflate_codes grabbed too many bytes")
3974         k -= 8;
3975         n++;
3976         p--;                    /* can always return one */
3977       }
3978       s->mode = DRY;
3979     case DRY:
3980       FLUSH
3981       if (s->read != s->write)
3982         LEAVE
3983       s->mode = DONEB;
3984     case DONEB:
3985       r = Z_STREAM_END;
3986       LEAVE
3987     case BADB:
3988       r = Z_DATA_ERROR;
3989       LEAVE
3990     default:
3991       r = Z_STREAM_ERROR;
3992       LEAVE
3993   }
3994 }
3995
3996
3997 int inflate_blocks_free(s, z, c)
3998 inflate_blocks_statef *s;
3999 z_streamp z;
4000 uLongf *c;
4001 {
4002   inflate_blocks_reset(s, z, c);
4003   ZFREE(z, s->window);
4004   ZFREE(z, s);
4005   Trace((stderr, "inflate:   blocks freed\n"));
4006   return Z_OK;
4007 }
4008
4009
4010 void inflate_set_dictionary(s, d, n)
4011 inflate_blocks_statef *s;
4012 const Bytef *d;
4013 uInt  n;
4014 {
4015   zmemcpy((charf *)s->window, d, n);
4016   s->read = s->write = s->window + n;
4017 }
4018
4019 /*
4020  * This subroutine adds the data at next_in/avail_in to the output history
4021  * without performing any output.  The output buffer must be "caught up";
4022  * i.e. no pending output (hence s->read equals s->write), and the state must
4023  * be BLOCKS (i.e. we should be willing to see the start of a series of
4024  * BLOCKS).  On exit, the output will also be caught up, and the checksum
4025  * will have been updated if need be.
4026  */
4027 int inflate_addhistory(s, z)
4028 inflate_blocks_statef *s;
4029 z_stream *z;
4030 {
4031     uLong b;              /* bit buffer */  /* NOT USED HERE */
4032     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
4033     uInt t;               /* temporary storage */
4034     Bytef *p;             /* input data pointer */
4035     uInt n;               /* bytes available there */
4036     Bytef *q;             /* output window write pointer */
4037     uInt m;               /* bytes to end of window or read pointer */
4038
4039     if (s->read != s->write)
4040         return Z_STREAM_ERROR;
4041     if (s->mode != TYPE)
4042         return Z_DATA_ERROR;
4043
4044     /* we're ready to rock */
4045     LOAD
4046     /* while there is input ready, copy to output buffer, moving
4047      * pointers as needed.
4048      */
4049     while (n) {
4050         t = n;  /* how many to do */
4051         /* is there room until end of buffer? */
4052         if (t > m) t = m;
4053         /* update check information */
4054         if (s->checkfn != Z_NULL)
4055             s->check = (*s->checkfn)(s->check, q, t);
4056         zmemcpy(q, p, t);
4057         q += t;
4058         p += t;
4059         n -= t;
4060         z->total_out += t;
4061         s->read = q;    /* drag read pointer forward */
4062 /*      WWRAP  */       /* expand WWRAP macro by hand to handle s->read */
4063         if (q == s->end) {
4064             s->read = q = s->window;
4065             m = WAVAIL;
4066         }
4067     }
4068     UPDATE
4069     return Z_OK;
4070 }
4071
4072
4073 /*
4074  * At the end of a Deflate-compressed PPP packet, we expect to have seen
4075  * a `stored' block type value but not the (zero) length bytes.
4076  */
4077 int inflate_packet_flush(s)
4078     inflate_blocks_statef *s;
4079 {
4080     if (s->mode != LENS)
4081         return Z_DATA_ERROR;
4082     s->mode = TYPE;
4083     return Z_OK;
4084 }
4085 /* --- infblock.c */
4086
4087 /* +++ inftrees.c */
4088 /* inftrees.c -- generate Huffman trees for efficient decoding
4089  * Copyright (C) 1995-1996 Mark Adler
4090  * For conditions of distribution and use, see copyright notice in zlib.h 
4091  */
4092
4093 /* #include "zutil.h" */
4094 /* #include "inftrees.h" */
4095
4096 char inflate_copyright[] = " inflate 1.0.4 Copyright 1995-1996 Mark Adler ";
4097 /*
4098   If you use the zlib library in a product, an acknowledgment is welcome
4099   in the documentation of your product. If for some reason you cannot
4100   include such an acknowledgment, I would appreciate that you keep this
4101   copyright string in the executable of your product.
4102  */
4103
4104 #ifndef NO_DUMMY_DECL
4105 struct internal_state  {int dummy;}; /* for buggy compilers */
4106 #endif
4107
4108 /* simplify the use of the inflate_huft type with some defines */
4109 #define base more.Base
4110 #define next more.Next
4111 #define exop word.what.Exop
4112 #define bits word.what.Bits
4113
4114
4115 local int huft_build OF((
4116     uIntf *,            /* code lengths in bits */
4117     uInt,               /* number of codes */
4118     uInt,               /* number of "simple" codes */
4119     const uIntf *,      /* list of base values for non-simple codes */
4120     const uIntf *,      /* list of extra bits for non-simple codes */
4121     inflate_huft * FAR*,/* result: starting table */
4122     uIntf *,            /* maximum lookup bits (returns actual) */
4123     z_streamp ));       /* for zalloc function */
4124
4125 local voidpf falloc OF((
4126     voidpf,             /* opaque pointer (not used) */
4127     uInt,               /* number of items */
4128     uInt));             /* size of item */
4129
4130 /* Tables for deflate from PKZIP's appnote.txt. */
4131 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4132         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4133         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4134         /* see note #13 above about 258 */
4135 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4136         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4137         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4138 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4139         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4140         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4141         8193, 12289, 16385, 24577};
4142 local const uInt cpdext[30] = { /* Extra bits for distance codes */
4143         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4144         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4145         12, 12, 13, 13};
4146
4147 /*
4148    Huffman code decoding is performed using a multi-level table lookup.
4149    The fastest way to decode is to simply build a lookup table whose
4150    size is determined by the longest code.  However, the time it takes
4151    to build this table can also be a factor if the data being decoded
4152    is not very long.  The most common codes are necessarily the
4153    shortest codes, so those codes dominate the decoding time, and hence
4154    the speed.  The idea is you can have a shorter table that decodes the
4155    shorter, more probable codes, and then point to subsidiary tables for
4156    the longer codes.  The time it costs to decode the longer codes is
4157    then traded against the time it takes to make longer tables.
4158
4159    This results of this trade are in the variables lbits and dbits
4160    below.  lbits is the number of bits the first level table for literal/
4161    length codes can decode in one step, and dbits is the same thing for
4162    the distance codes.  Subsequent tables are also less than or equal to
4163    those sizes.  These values may be adjusted either when all of the
4164    codes are shorter than that, in which case the longest code length in
4165    bits is used, or when the shortest code is *longer* than the requested
4166    table size, in which case the length of the shortest code in bits is
4167    used.
4168
4169    There are two different values for the two tables, since they code a
4170    different number of possibilities each.  The literal/length table
4171    codes 286 possible values, or in a flat code, a little over eight
4172    bits.  The distance table codes 30 possible values, or a little less
4173    than five bits, flat.  The optimum values for speed end up being
4174    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4175    The optimum values may differ though from machine to machine, and
4176    possibly even between compilers.  Your mileage may vary.
4177  */
4178
4179
4180 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4181 #define BMAX 15         /* maximum bit length of any code */
4182 #define N_MAX 288       /* maximum number of codes in any set */
4183
4184 #ifdef DEBUG_ZLIB
4185   uInt inflate_hufts;
4186 #endif
4187
4188 local int huft_build(b, n, s, d, e, t, m, zs)
4189 uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
4190 uInt n;                 /* number of codes (assumed <= N_MAX) */
4191 uInt s;                 /* number of simple-valued codes (0..s-1) */
4192 const uIntf *d;         /* list of base values for non-simple codes */
4193 const uIntf *e;         /* list of extra bits for non-simple codes */
4194 inflate_huft * FAR *t;  /* result: starting table */
4195 uIntf *m;               /* maximum lookup bits, returns actual */
4196 z_streamp zs;           /* for zalloc function */
4197 /* Given a list of code lengths and a maximum table size, make a set of
4198    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
4199    if the given code set is incomplete (the tables are still built in this
4200    case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
4201    lengths), or Z_MEM_ERROR if not enough memory. */
4202 {
4203
4204   uInt a;                       /* counter for codes of length k */
4205   uInt c[BMAX+1];               /* bit length count table */
4206   uInt f;                       /* i repeats in table every f entries */
4207   int g;                        /* maximum code length */
4208   int h;                        /* table level */
4209   register uInt i;              /* counter, current code */
4210   register uInt j;              /* counter */
4211   register int k;               /* number of bits in current code */
4212   int l;                        /* bits per table (returned in m) */
4213   register uIntf *p;            /* pointer into c[], b[], or v[] */
4214   inflate_huft *q;              /* points to current table */
4215   struct inflate_huft_s r;      /* table entry for structure assignment */
4216   inflate_huft *u[BMAX];        /* table stack */
4217   uInt v[N_MAX];                /* values in order of bit length */
4218   register int w;               /* bits before this table == (l * h) */
4219   uInt x[BMAX+1];               /* bit offsets, then code stack */
4220   uIntf *xp;                    /* pointer into x */
4221   int y;                        /* number of dummy codes added */
4222   uInt z;                       /* number of entries in current table */
4223
4224
4225   /* Generate counts for each bit length */
4226   p = c;
4227 #define C0 *p++ = 0;
4228 #define C2 C0 C0 C0 C0
4229 #define C4 C2 C2 C2 C2
4230   C4                            /* clear c[]--assume BMAX+1 is 16 */
4231   p = b;  i = n;
4232   do {
4233     c[*p++]++;                  /* assume all entries <= BMAX */
4234   } while (--i);
4235   if (c[0] == n)                /* null input--all zero length codes */
4236   {
4237     *t = (inflate_huft *)Z_NULL;
4238     *m = 0;
4239     return Z_OK;
4240   }
4241
4242
4243   /* Find minimum and maximum length, bound *m by those */
4244   l = *m;
4245   for (j = 1; j <= BMAX; j++)
4246     if (c[j])
4247       break;
4248   k = j;                        /* minimum code length */
4249   if ((uInt)l < j)
4250     l = j;
4251   for (i = BMAX; i; i--)
4252     if (c[i])
4253       break;
4254   g = i;                        /* maximum code length */
4255   if ((uInt)l > i)
4256     l = i;
4257   *m = l;
4258
4259
4260   /* Adjust last length count to fill out codes, if needed */
4261   for (y = 1 << j; j < i; j++, y <<= 1)
4262     if ((y -= c[j]) < 0)
4263       return Z_DATA_ERROR;
4264   if ((y -= c[i]) < 0)
4265     return Z_DATA_ERROR;
4266   c[i] += y;
4267
4268
4269   /* Generate starting offsets into the value table for each length */
4270   x[1] = j = 0;
4271   p = c + 1;  xp = x + 2;
4272   while (--i) {                 /* note that i == g from above */
4273     *xp++ = (j += *p++);
4274   }
4275
4276
4277   /* Make a table of values in order of bit lengths */
4278   p = b;  i = 0;
4279   do {
4280     if ((j = *p++) != 0)
4281       v[x[j]++] = i;
4282   } while (++i < n);
4283   n = x[g];                   /* set n to length of v */
4284
4285
4286   /* Generate the Huffman codes and for each, make the table entries */
4287   x[0] = i = 0;                 /* first Huffman code is zero */
4288   p = v;                        /* grab values in bit order */
4289   h = -1;                       /* no tables yet--level -1 */
4290   w = -l;                       /* bits decoded == (l * h) */
4291   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
4292   q = (inflate_huft *)Z_NULL;   /* ditto */
4293   z = 0;                        /* ditto */
4294
4295   /* go through the bit lengths (k already is bits in shortest code) */
4296   for (; k <= g; k++)
4297   {
4298     a = c[k];
4299     while (a--)
4300     {
4301       /* here i is the Huffman code of length k bits for value *p */
4302       /* make tables up to required level */
4303       while (k > w + l)
4304       {
4305         h++;
4306         w += l;                 /* previous table always l bits */
4307
4308         /* compute minimum size table less than or equal to l bits */
4309         z = g - w;
4310         z = z > (uInt)l ? l : z;        /* table size upper limit */
4311         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
4312         {                       /* too few codes for k-w bit table */
4313           f -= a + 1;           /* deduct codes from patterns left */
4314           xp = c + k;
4315           if (j < z)
4316             while (++j < z)     /* try smaller tables up to z bits */
4317             {
4318               if ((f <<= 1) <= *++xp)
4319                 break;          /* enough codes to use up j bits */
4320               f -= *xp;         /* else deduct codes from patterns */
4321             }
4322         }
4323         z = 1 << j;             /* table entries for j-bit table */
4324
4325         /* allocate and link in new table */
4326         if ((q = (inflate_huft *)ZALLOC
4327              (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
4328         {
4329           if (h)
4330             inflate_trees_free(u[0], zs);
4331           return Z_MEM_ERROR;   /* not enough memory */
4332         }
4333 #ifdef DEBUG_ZLIB
4334         inflate_hufts += z + 1;
4335 #endif
4336         *t = q + 1;             /* link to list for huft_free() */
4337         *(t = &(q->next)) = Z_NULL;
4338         u[h] = ++q;             /* table starts after link */
4339
4340         /* connect to last table, if there is one */
4341         if (h)
4342         {
4343           x[h] = i;             /* save pattern for backing up */
4344           r.bits = (Byte)l;     /* bits to dump before this table */
4345           r.exop = (Byte)j;     /* bits in this table */
4346           r.next = q;           /* pointer to this table */
4347           j = i >> (w - l);     /* (get around Turbo C bug) */
4348           u[h-1][j] = r;        /* connect to last table */
4349         }
4350       }
4351
4352       /* set up table entry in r */
4353       r.bits = (Byte)(k - w);
4354       if (p >= v + n)
4355         r.exop = 128 + 64;      /* out of values--invalid code */
4356       else if (*p < s)
4357       {
4358         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
4359         r.base = *p++;          /* simple code is just the value */
4360       }
4361       else
4362       {
4363         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4364         r.base = d[*p++ - s];
4365       }
4366
4367       /* fill code-like entries with r */
4368       f = 1 << (k - w);
4369       for (j = i >> w; j < z; j += f)
4370         q[j] = r;
4371
4372       /* backwards increment the k-bit code i */
4373       for (j = 1 << (k - 1); i & j; j >>= 1)
4374         i ^= j;
4375       i ^= j;
4376
4377       /* backup over finished tables */
4378       while ((i & ((1 << w) - 1)) != x[h])
4379       {
4380         h--;                    /* don't need to update q */
4381         w -= l;
4382       }
4383     }
4384   }
4385
4386
4387   /* Return Z_BUF_ERROR if we were given an incomplete table */
4388   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4389 }
4390
4391
4392 int inflate_trees_bits(c, bb, tb, z)
4393 uIntf *c;               /* 19 code lengths */
4394 uIntf *bb;              /* bits tree desired/actual depth */
4395 inflate_huft * FAR *tb; /* bits tree result */
4396 z_streamp z;            /* for zfree function */
4397 {
4398   int r;
4399
4400   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
4401   if (r == Z_DATA_ERROR)
4402     z->msg = (char*)"oversubscribed dynamic bit lengths tree";
4403   else if (r == Z_BUF_ERROR || *bb == 0)
4404   {
4405     inflate_trees_free(*tb, z);
4406     z->msg = (char*)"incomplete dynamic bit lengths tree";
4407     r = Z_DATA_ERROR;
4408   }
4409   return r;
4410 }
4411
4412
4413 int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
4414 uInt nl;                /* number of literal/length codes */
4415 uInt nd;                /* number of distance codes */
4416 uIntf *c;               /* that many (total) code lengths */
4417 uIntf *bl;              /* literal desired/actual bit depth */
4418 uIntf *bd;              /* distance desired/actual bit depth */
4419 inflate_huft * FAR *tl; /* literal/length tree result */
4420 inflate_huft * FAR *td; /* distance tree result */
4421 z_streamp z;            /* for zfree function */
4422 {
4423   int r;
4424
4425   /* build literal/length tree */
4426   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z);
4427   if (r != Z_OK || *bl == 0)
4428   {
4429     if (r == Z_DATA_ERROR)
4430       z->msg = (char*)"oversubscribed literal/length tree";
4431     else if (r != Z_MEM_ERROR)
4432     {
4433       inflate_trees_free(*tl, z);
4434       z->msg = (char*)"incomplete literal/length tree";
4435       r = Z_DATA_ERROR;
4436     }
4437     return r;
4438   }
4439
4440   /* build distance tree */
4441   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z);
4442   if (r != Z_OK || (*bd == 0 && nl > 257))
4443   {
4444     if (r == Z_DATA_ERROR)
4445       z->msg = (char*)"oversubscribed distance tree";
4446     else if (r == Z_BUF_ERROR) {
4447 #ifdef PKZIP_BUG_WORKAROUND
4448       r = Z_OK;
4449     }
4450 #else
4451       inflate_trees_free(*td, z);
4452       z->msg = (char*)"incomplete distance tree";
4453       r = Z_DATA_ERROR;
4454     }
4455     else if (r != Z_MEM_ERROR)
4456     {
4457       z->msg = (char*)"empty distance tree with lengths";
4458       r = Z_DATA_ERROR;
4459     }
4460     inflate_trees_free(*tl, z);
4461     return r;
4462 #endif
4463   }
4464
4465   /* done */
4466   return Z_OK;
4467 }
4468
4469
4470 /* build fixed tables only once--keep them here */
4471 local int fixed_built = 0;
4472 #define FIXEDH 530      /* number of hufts used by fixed tables */
4473 local inflate_huft fixed_mem[FIXEDH];
4474 local uInt fixed_bl;
4475 local uInt fixed_bd;
4476 local inflate_huft *fixed_tl;
4477 local inflate_huft *fixed_td;
4478
4479
4480 local voidpf falloc(q, n, s)
4481 voidpf q;       /* opaque pointer */
4482 uInt n;         /* number of items */
4483 uInt s;         /* size of item */
4484 {
4485   Assert(s == sizeof(inflate_huft) && n <= *(intf *)q,
4486          "inflate_trees falloc overflow");
4487   *(intf *)q -= n+s-s; /* s-s to avoid warning */
4488   return (voidpf)(fixed_mem + *(intf *)q);
4489 }
4490
4491
4492 int inflate_trees_fixed(bl, bd, tl, td)
4493 uIntf *bl;               /* literal desired/actual bit depth */
4494 uIntf *bd;               /* distance desired/actual bit depth */
4495 inflate_huft * FAR *tl;  /* literal/length tree result */
4496 inflate_huft * FAR *td;  /* distance tree result */
4497 {
4498   /* build fixed tables if not already (multiple overlapped executions ok) */
4499   if (!fixed_built)
4500   {
4501     int k;              /* temporary variable */
4502     unsigned c[288];    /* length list for huft_build */
4503     z_stream z;         /* for falloc function */
4504     int f = FIXEDH;     /* number of hufts left in fixed_mem */
4505
4506     /* set up fake z_stream for memory routines */
4507     z.zalloc = falloc;
4508     z.zfree = Z_NULL;
4509     z.opaque = (voidpf)&f;
4510
4511     /* literal table */
4512     for (k = 0; k < 144; k++)
4513       c[k] = 8;
4514     for (; k < 256; k++)
4515       c[k] = 9;
4516     for (; k < 280; k++)
4517       c[k] = 7;
4518     for (; k < 288; k++)
4519       c[k] = 8;
4520     fixed_bl = 7;
4521     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4522
4523     /* distance table */
4524     for (k = 0; k < 30; k++)
4525       c[k] = 5;
4526     fixed_bd = 5;
4527     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4528
4529     /* done */
4530     Assert(f == 0, "invalid build of fixed tables");
4531     fixed_built = 1;
4532   }
4533   *bl = fixed_bl;
4534   *bd = fixed_bd;
4535   *tl = fixed_tl;
4536   *td = fixed_td;
4537   return Z_OK;
4538 }
4539
4540
4541 int inflate_trees_free(t, z)
4542 inflate_huft *t;        /* table to free */
4543 z_streamp z;            /* for zfree function */
4544 /* Free the malloc'ed tables built by huft_build(), which makes a linked
4545    list of the tables it made, with the links in a dummy first entry of
4546    each table. */
4547 {
4548   register inflate_huft *p, *q, *r;
4549
4550   /* Reverse linked list */
4551   p = Z_NULL;
4552   q = t;
4553   while (q != Z_NULL)
4554   {
4555     r = (q - 1)->next;
4556     (q - 1)->next = p;
4557     p = q;
4558     q = r;
4559   }
4560   /* Go through linked list, freeing from the malloced (t[-1]) address. */
4561   while (p != Z_NULL)
4562   {
4563     q = (--p)->next;
4564     ZFREE(z,p);
4565     p = q;
4566   } 
4567   return Z_OK;
4568 }
4569 /* --- inftrees.c */
4570
4571 /* +++ infcodes.c */
4572 /* infcodes.c -- process literals and length/distance pairs
4573  * Copyright (C) 1995-1996 Mark Adler
4574  * For conditions of distribution and use, see copyright notice in zlib.h 
4575  */
4576
4577 /* #include "zutil.h" */
4578 /* #include "inftrees.h" */
4579 /* #include "infblock.h" */
4580 /* #include "infcodes.h" */
4581 /* #include "infutil.h" */
4582
4583 /* +++ inffast.h */
4584 /* inffast.h -- header to use inffast.c
4585  * Copyright (C) 1995-1996 Mark Adler
4586  * For conditions of distribution and use, see copyright notice in zlib.h 
4587  */
4588
4589 /* WARNING: this file should *not* be used by applications. It is
4590    part of the implementation of the compression library and is
4591    subject to change. Applications should only use zlib.h.
4592  */
4593
4594 extern int inflate_fast OF((
4595     uInt,
4596     uInt,
4597     inflate_huft *,
4598     inflate_huft *,
4599     inflate_blocks_statef *,
4600     z_streamp ));
4601 /* --- inffast.h */
4602
4603 /* simplify the use of the inflate_huft type with some defines */
4604 #define base more.Base
4605 #define next more.Next
4606 #define exop word.what.Exop
4607 #define bits word.what.Bits
4608
4609 /* inflate codes private state */
4610 struct inflate_codes_state {
4611
4612   /* mode */
4613   enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4614       START,    /* x: set up for LEN */
4615       LEN,      /* i: get length/literal/eob next */
4616       LENEXT,   /* i: getting length extra (have base) */
4617       DIST,     /* i: get distance next */
4618       DISTEXT,  /* i: getting distance extra */
4619       COPY,     /* o: copying bytes in window, waiting for space */
4620       LIT,      /* o: got literal, waiting for output space */
4621       WASH,     /* o: got eob, possibly still output waiting */
4622       END,      /* x: got eob and all data flushed */
4623       BADCODE}  /* x: got error */
4624     mode;               /* current inflate_codes mode */
4625
4626   /* mode dependent information */
4627   uInt len;
4628   union {
4629     struct {
4630       inflate_huft *tree;       /* pointer into tree */
4631       uInt need;                /* bits needed */
4632     } code;             /* if LEN or DIST, where in tree */
4633     uInt lit;           /* if LIT, literal */
4634     struct {
4635       uInt get;                 /* bits to get for extra */
4636       uInt dist;                /* distance back to copy from */
4637     } copy;             /* if EXT or COPY, where and how much */
4638   } sub;                /* submode */
4639
4640   /* mode independent information */
4641   Byte lbits;           /* ltree bits decoded per branch */
4642   Byte dbits;           /* dtree bits decoder per branch */
4643   inflate_huft *ltree;          /* literal/length/eob tree */
4644   inflate_huft *dtree;          /* distance tree */
4645
4646 };
4647
4648
4649 inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4650 uInt bl, bd;
4651 inflate_huft *tl;
4652 inflate_huft *td; /* need separate declaration for Borland C++ */
4653 z_streamp z;
4654 {
4655   inflate_codes_statef *c;
4656
4657   if ((c = (inflate_codes_statef *)
4658        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4659   {
4660     c->mode = START;
4661     c->lbits = (Byte)bl;
4662     c->dbits = (Byte)bd;
4663     c->ltree = tl;
4664     c->dtree = td;
4665     Tracev((stderr, "inflate:       codes new\n"));
4666   }
4667   return c;
4668 }
4669
4670
4671 int inflate_codes(s, z, r)
4672 inflate_blocks_statef *s;
4673 z_streamp z;
4674 int r;
4675 {
4676   uInt j;               /* temporary storage */
4677   inflate_huft *t;      /* temporary pointer */
4678   uInt e;               /* extra bits or operation */
4679   uLong b;              /* bit buffer */
4680   uInt k;               /* bits in bit buffer */
4681   Bytef *p;             /* input data pointer */
4682   uInt n;               /* bytes available there */
4683   Bytef *q;             /* output window write pointer */
4684   uInt m;               /* bytes to end of window or read pointer */
4685   Bytef *f;             /* pointer to copy strings from */
4686   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
4687
4688   /* copy input/output information to locals (UPDATE macro restores) */
4689   LOAD
4690
4691   /* process input and output based on current state */
4692   while (1) switch (c->mode)
4693   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4694     case START:         /* x: set up for LEN */
4695 #ifndef SLOW
4696       if (m >= 258 && n >= 10)
4697       {
4698         UPDATE
4699         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4700         LOAD
4701         if (r != Z_OK)
4702         {
4703           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4704           break;
4705         }
4706       }
4707 #endif /* !SLOW */
4708       c->sub.code.need = c->lbits;
4709       c->sub.code.tree = c->ltree;
4710       c->mode = LEN;
4711     case LEN:           /* i: get length/literal/eob next */
4712       j = c->sub.code.need;
4713       NEEDBITS(j)
4714       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4715       DUMPBITS(t->bits)
4716       e = (uInt)(t->exop);
4717       if (e == 0)               /* literal */
4718       {
4719         c->sub.lit = t->base;
4720         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4721                  "inflate:         literal '%c'\n" :
4722                  "inflate:         literal 0x%02x\n", t->base));
4723         c->mode = LIT;
4724         break;
4725       }
4726       if (e & 16)               /* length */
4727       {
4728         c->sub.copy.get = e & 15;
4729         c->len = t->base;
4730         c->mode = LENEXT;
4731         break;
4732       }
4733       if ((e & 64) == 0)        /* next table */
4734       {
4735         c->sub.code.need = e;
4736         c->sub.code.tree = t->next;
4737         break;
4738       }
4739       if (e & 32)               /* end of block */
4740       {
4741         Tracevv((stderr, "inflate:         end of block\n"));
4742         c->mode = WASH;
4743         break;
4744       }
4745       c->mode = BADCODE;        /* invalid code */
4746       z->msg = (char*)"invalid literal/length code";
4747       r = Z_DATA_ERROR;
4748       LEAVE
4749     case LENEXT:        /* i: getting length extra (have base) */
4750       j = c->sub.copy.get;
4751       NEEDBITS(j)
4752       c->len += (uInt)b & inflate_mask[j];
4753       DUMPBITS(j)
4754       c->sub.code.need = c->dbits;
4755       c->sub.code.tree = c->dtree;
4756       Tracevv((stderr, "inflate:         length %u\n", c->len));
4757       c->mode = DIST;
4758     case DIST:          /* i: get distance next */
4759       j = c->sub.code.need;
4760       NEEDBITS(j)
4761       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4762       DUMPBITS(t->bits)
4763       e = (uInt)(t->exop);
4764       if (e & 16)               /* distance */
4765       {
4766         c->sub.copy.get = e & 15;
4767         c->sub.copy.dist = t->base;
4768         c->mode = DISTEXT;
4769         break;
4770       }
4771       if ((e & 64) == 0)        /* next table */
4772       {
4773         c->sub.code.need = e;
4774         c->sub.code.tree = t->next;
4775         break;
4776       }
4777       c->mode = BADCODE;        /* invalid code */
4778       z->msg = (char*)"invalid distance code";
4779       r = Z_DATA_ERROR;
4780       LEAVE
4781     case DISTEXT:       /* i: getting distance extra */
4782       j = c->sub.copy.get;
4783       NEEDBITS(j)
4784       c->sub.copy.dist += (uInt)b & inflate_mask[j];
4785       DUMPBITS(j)
4786       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
4787       c->mode = COPY;
4788     case COPY:          /* o: copying bytes in window, waiting for space */
4789 #ifndef __TURBOC__ /* Turbo C bug for following expression */
4790       f = (uInt)(q - s->window) < c->sub.copy.dist ?
4791           s->end - (c->sub.copy.dist - (q - s->window)) :
4792           q - c->sub.copy.dist;
4793 #else
4794       f = q - c->sub.copy.dist;
4795       if ((uInt)(q - s->window) < c->sub.copy.dist)
4796         f = s->end - (c->sub.copy.dist - (uInt)(q - s->window));
4797 #endif
4798       while (c->len)
4799       {
4800         NEEDOUT
4801         OUTBYTE(*f++)
4802         if (f == s->end)
4803           f = s->window;
4804         c->len--;
4805       }
4806       c->mode = START;
4807       break;
4808     case LIT:           /* o: got literal, waiting for output space */
4809       NEEDOUT
4810       OUTBYTE(c->sub.lit)
4811       c->mode = START;
4812       break;
4813     case WASH:          /* o: got eob, possibly more output */
4814       FLUSH
4815       if (s->read != s->write)
4816         LEAVE
4817       c->mode = END;
4818     case END:
4819       r = Z_STREAM_END;
4820       LEAVE
4821     case BADCODE:       /* x: got error */
4822       r = Z_DATA_ERROR;
4823       LEAVE
4824     default:
4825       r = Z_STREAM_ERROR;
4826       LEAVE
4827   }
4828 }
4829
4830
4831 void inflate_codes_free(c, z)
4832 inflate_codes_statef *c;
4833 z_streamp z;
4834 {
4835   ZFREE(z, c);
4836   Tracev((stderr, "inflate:       codes free\n"));
4837 }
4838 /* --- infcodes.c */
4839
4840 /* +++ infutil.c */
4841 /* inflate_util.c -- data and routines common to blocks and codes
4842  * Copyright (C) 1995-1996 Mark Adler
4843  * For conditions of distribution and use, see copyright notice in zlib.h 
4844  */
4845
4846 /* #include "zutil.h" */
4847 /* #include "infblock.h" */
4848 /* #include "inftrees.h" */
4849 /* #include "infcodes.h" */
4850 /* #include "infutil.h" */
4851
4852 #ifndef NO_DUMMY_DECL
4853 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4854 #endif
4855
4856 /* And'ing with mask[n] masks the lower n bits */
4857 uInt inflate_mask[17] = {
4858     0x0000,
4859     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
4860     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
4861 };
4862
4863
4864 /* copy as much as possible from the sliding window to the output area */
4865 int inflate_flush(s, z, r)
4866 inflate_blocks_statef *s;
4867 z_streamp z;
4868 int r;
4869 {
4870   uInt n;
4871   Bytef *p;
4872   Bytef *q;
4873
4874   /* local copies of source and destination pointers */
4875   p = z->next_out;
4876   q = s->read;
4877
4878   /* compute number of bytes to copy as far as end of window */
4879   n = (uInt)((q <= s->write ? s->write : s->end) - q);
4880   if (n > z->avail_out) n = z->avail_out;
4881   if (n && r == Z_BUF_ERROR) r = Z_OK;
4882
4883   /* update counters */
4884   z->avail_out -= n;
4885   z->total_out += n;
4886
4887   /* update check information */
4888   if (s->checkfn != Z_NULL)
4889     z->adler = s->check = (*s->checkfn)(s->check, q, n);
4890
4891   /* copy as far as end of window */
4892   if (p != Z_NULL) {
4893     zmemcpy(p, q, n);
4894     p += n;
4895   }
4896   q += n;
4897
4898   /* see if more to copy at beginning of window */
4899   if (q == s->end)
4900   {
4901     /* wrap pointers */
4902     q = s->window;
4903     if (s->write == s->end)
4904       s->write = s->window;
4905
4906     /* compute bytes to copy */
4907     n = (uInt)(s->write - q);
4908     if (n > z->avail_out) n = z->avail_out;
4909     if (n && r == Z_BUF_ERROR) r = Z_OK;
4910
4911     /* update counters */
4912     z->avail_out -= n;
4913     z->total_out += n;
4914
4915     /* update check information */
4916     if (s->checkfn != Z_NULL)
4917       z->adler = s->check = (*s->checkfn)(s->check, q, n);
4918
4919     /* copy */
4920     if (p != Z_NULL) {
4921       zmemcpy(p, q, n);
4922       p += n;
4923     }
4924     q += n;
4925   }
4926
4927   /* update pointers */
4928   z->next_out = p;
4929   s->read = q;
4930
4931   /* done */
4932   return r;
4933 }
4934 /* --- infutil.c */
4935
4936 /* +++ inffast.c */
4937 /* inffast.c -- process literals and length/distance pairs fast
4938  * Copyright (C) 1995-1996 Mark Adler
4939  * For conditions of distribution and use, see copyright notice in zlib.h 
4940  */
4941
4942 /* #include "zutil.h" */
4943 /* #include "inftrees.h" */
4944 /* #include "infblock.h" */
4945 /* #include "infcodes.h" */
4946 /* #include "infutil.h" */
4947 /* #include "inffast.h" */
4948
4949 #ifndef NO_DUMMY_DECL
4950 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
4951 #endif
4952
4953 /* simplify the use of the inflate_huft type with some defines */
4954 #define base more.Base
4955 #define next more.Next
4956 #define exop word.what.Exop
4957 #define bits word.what.Bits
4958
4959 /* macros for bit input with no checking and for returning unused bytes */
4960 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4961 #define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4962
4963 /* Called with number of bytes left to write in window at least 258
4964    (the maximum string length) and number of input bytes available
4965    at least ten.  The ten bytes are six bytes for the longest length/
4966    distance pair plus four bytes for overloading the bit buffer. */
4967
4968 int inflate_fast(bl, bd, tl, td, s, z)
4969 uInt bl, bd;
4970 inflate_huft *tl;
4971 inflate_huft *td; /* need separate declaration for Borland C++ */
4972 inflate_blocks_statef *s;
4973 z_streamp z;
4974 {
4975   inflate_huft *t;      /* temporary pointer */
4976   uInt e;               /* extra bits or operation */
4977   uLong b;              /* bit buffer */
4978   uInt k;               /* bits in bit buffer */
4979   Bytef *p;             /* input data pointer */
4980   uInt n;               /* bytes available there */
4981   Bytef *q;             /* output window write pointer */
4982   uInt m;               /* bytes to end of window or read pointer */
4983   uInt ml;              /* mask for literal/length tree */
4984   uInt md;              /* mask for distance tree */
4985   uInt c;               /* bytes to copy */
4986   uInt d;               /* distance back to copy from */
4987   Bytef *r;             /* copy source pointer */
4988
4989   /* load input, output, bit values */
4990   LOAD
4991
4992   /* initialize masks */
4993   ml = inflate_mask[bl];
4994   md = inflate_mask[bd];
4995
4996   /* do until not enough input or output space for fast loop */
4997   do {                          /* assume called with m >= 258 && n >= 10 */
4998     /* get literal/length code */
4999     GRABBITS(20)                /* max bits for literal/length code */
5000     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5001     {
5002       DUMPBITS(t->bits)
5003       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5004                 "inflate:         * literal '%c'\n" :
5005                 "inflate:         * literal 0x%02x\n", t->base));
5006       *q++ = (Byte)t->base;
5007       m--;
5008       continue;
5009     }
5010     do {
5011       DUMPBITS(t->bits)
5012       if (e & 16)
5013       {
5014         /* get extra bits for length */
5015         e &= 15;
5016         c = t->base + ((uInt)b & inflate_mask[e]);
5017         DUMPBITS(e)
5018         Tracevv((stderr, "inflate:         * length %u\n", c));
5019
5020         /* decode distance base of block to copy */
5021         GRABBITS(15);           /* max bits for distance code */
5022         e = (t = td + ((uInt)b & md))->exop;
5023         do {
5024           DUMPBITS(t->bits)
5025           if (e & 16)
5026           {
5027             /* get extra bits to add to distance base */
5028             e &= 15;
5029             GRABBITS(e)         /* get extra bits (up to 13) */
5030             d = t->base + ((uInt)b & inflate_mask[e]);
5031             DUMPBITS(e)
5032             Tracevv((stderr, "inflate:         * distance %u\n", d));
5033
5034             /* do the copy */
5035             m -= c;
5036             if ((uInt)(q - s->window) >= d)     /* offset before dest */
5037             {                                   /*  just copy */
5038               r = q - d;
5039               *q++ = *r++;  c--;        /* minimum count is three, */
5040               *q++ = *r++;  c--;        /*  so unroll loop a little */
5041             }
5042             else                        /* else offset after destination */
5043             {
5044               e = d - (uInt)(q - s->window); /* bytes from offset to end */
5045               r = s->end - e;           /* pointer to offset */
5046               if (c > e)                /* if source crosses, */
5047               {
5048                 c -= e;                 /* copy to end of window */
5049                 do {
5050                   *q++ = *r++;
5051                 } while (--e);
5052                 r = s->window;          /* copy rest from start of window */
5053               }
5054             }
5055             do {                        /* copy all or what's left */
5056               *q++ = *r++;
5057             } while (--c);
5058             break;
5059           }
5060           else if ((e & 64) == 0)
5061             e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
5062           else
5063           {
5064             z->msg = (char*)"invalid distance code";
5065             UNGRAB
5066             UPDATE
5067             return Z_DATA_ERROR;
5068           }
5069         } while (1);
5070         break;
5071       }
5072       if ((e & 64) == 0)
5073       {
5074         if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
5075         {
5076           DUMPBITS(t->bits)
5077           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5078                     "inflate:         * literal '%c'\n" :
5079                     "inflate:         * literal 0x%02x\n", t->base));
5080           *q++ = (Byte)t->base;
5081           m--;
5082           break;
5083         }
5084       }
5085       else if (e & 32)
5086       {
5087         Tracevv((stderr, "inflate:         * end of block\n"));
5088         UNGRAB
5089         UPDATE
5090         return Z_STREAM_END;
5091       }
5092       else
5093       {
5094         z->msg = (char*)"invalid literal/length code";
5095         UNGRAB
5096         UPDATE
5097         return Z_DATA_ERROR;
5098       }
5099     } while (1);
5100   } while (m >= 258 && n >= 10);
5101
5102   /* not enough input or output--restore pointers and return */
5103   UNGRAB
5104   UPDATE
5105   return Z_OK;
5106 }
5107 /* --- inffast.c */
5108
5109 /* +++ zutil.c */
5110 /* zutil.c -- target dependent utility functions for the compression library
5111  * Copyright (C) 1995-1996 Jean-loup Gailly.
5112  * For conditions of distribution and use, see copyright notice in zlib.h 
5113  */
5114
5115 /* From: zutil.c,v 1.17 1996/07/24 13:41:12 me Exp $ */
5116
5117 #ifdef DEBUG_ZLIB
5118 #include <stdio.h>
5119 #endif
5120
5121 /* #include "zutil.h" */
5122
5123 #ifndef NO_DUMMY_DECL
5124 struct internal_state      {int dummy;}; /* for buggy compilers */
5125 #endif
5126
5127 #ifndef STDC
5128 extern void exit OF((int));
5129 #endif
5130
5131 const char *z_errmsg[10] = {
5132 "need dictionary",     /* Z_NEED_DICT       2  */
5133 "stream end",          /* Z_STREAM_END      1  */
5134 "",                    /* Z_OK              0  */
5135 "file error",          /* Z_ERRNO         (-1) */
5136 "stream error",        /* Z_STREAM_ERROR  (-2) */
5137 "data error",          /* Z_DATA_ERROR    (-3) */
5138 "insufficient memory", /* Z_MEM_ERROR     (-4) */
5139 "buffer error",        /* Z_BUF_ERROR     (-5) */
5140 "incompatible version",/* Z_VERSION_ERROR (-6) */
5141 ""};
5142
5143
5144 const char *zlibVersion()
5145 {
5146     return ZLIB_VERSION;
5147 }
5148
5149 #ifdef DEBUG_ZLIB
5150 void z_error (m)
5151     char *m;
5152 {
5153     fprintf(stderr, "%s\n", m);
5154     exit(1);
5155 }
5156 #endif
5157
5158 #ifndef HAVE_MEMCPY
5159
5160 void zmemcpy(dest, source, len)
5161     Bytef* dest;
5162     Bytef* source;
5163     uInt  len;
5164 {
5165     if (len == 0) return;
5166     do {
5167         *dest++ = *source++; /* ??? to be unrolled */
5168     } while (--len != 0);
5169 }
5170
5171 int zmemcmp(s1, s2, len)
5172     Bytef* s1;
5173     Bytef* s2;
5174     uInt  len;
5175 {
5176     uInt j;
5177
5178     for (j = 0; j < len; j++) {
5179         if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5180     }
5181     return 0;
5182 }
5183
5184 void zmemzero(dest, len)
5185     Bytef* dest;
5186     uInt  len;
5187 {
5188     if (len == 0) return;
5189     do {
5190         *dest++ = 0;  /* ??? to be unrolled */
5191     } while (--len != 0);
5192 }
5193 #endif
5194
5195 #ifdef __TURBOC__
5196 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5197 /* Small and medium model in Turbo C are for now limited to near allocation
5198  * with reduced MAX_WBITS and MAX_MEM_LEVEL
5199  */
5200 #  define MY_ZCALLOC
5201
5202 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5203  * and farmalloc(64K) returns a pointer with an offset of 8, so we
5204  * must fix the pointer. Warning: the pointer must be put back to its
5205  * original form in order to free it, use zcfree().
5206  */
5207
5208 #define MAX_PTR 10
5209 /* 10*64K = 640K */
5210
5211 local int next_ptr = 0;
5212
5213 typedef struct ptr_table_s {
5214     voidpf org_ptr;
5215     voidpf new_ptr;
5216 } ptr_table;
5217
5218 local ptr_table table[MAX_PTR];
5219 /* This table is used to remember the original form of pointers
5220  * to large buffers (64K). Such pointers are normalized with a zero offset.
5221  * Since MSDOS is not a preemptive multitasking OS, this table is not
5222  * protected from concurrent access. This hack doesn't work anyway on
5223  * a protected system like OS/2. Use Microsoft C instead.
5224  */
5225
5226 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5227 {
5228     voidpf buf = opaque; /* just to make some compilers happy */
5229     ulg bsize = (ulg)items*size;
5230
5231     /* If we allocate less than 65520 bytes, we assume that farmalloc
5232      * will return a usable pointer which doesn't have to be normalized.
5233      */
5234     if (bsize < 65520L) {
5235         buf = farmalloc(bsize);
5236         if (*(ush*)&buf != 0) return buf;
5237     } else {
5238         buf = farmalloc(bsize + 16L);
5239     }
5240     if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5241     table[next_ptr].org_ptr = buf;
5242
5243     /* Normalize the pointer to seg:0 */
5244     *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5245     *(ush*)&buf = 0;
5246     table[next_ptr++].new_ptr = buf;
5247     return buf;
5248 }
5249
5250 void  zcfree (voidpf opaque, voidpf ptr)
5251 {
5252     int n;
5253     if (*(ush*)&ptr != 0) { /* object < 64K */
5254         farfree(ptr);
5255         return;
5256     }
5257     /* Find the original pointer */
5258     for (n = 0; n < next_ptr; n++) {
5259         if (ptr != table[n].new_ptr) continue;
5260
5261         farfree(table[n].org_ptr);
5262         while (++n < next_ptr) {
5263             table[n-1] = table[n];
5264         }
5265         next_ptr--;
5266         return;
5267     }
5268     ptr = opaque; /* just to make some compilers happy */
5269     Assert(0, "zcfree: ptr not found");
5270 }
5271 #endif
5272 #endif /* __TURBOC__ */
5273
5274
5275 #if defined(M_I86) && !defined(__32BIT__)
5276 /* Microsoft C in 16-bit mode */
5277
5278 #  define MY_ZCALLOC
5279
5280 #if (!defined(_MSC_VER) || (_MSC_VER < 600))
5281 #  define _halloc  halloc
5282 #  define _hfree   hfree
5283 #endif
5284
5285 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5286 {
5287     if (opaque) opaque = 0; /* to make compiler happy */
5288     return _halloc((long)items, size);
5289 }
5290
5291 void  zcfree (voidpf opaque, voidpf ptr)
5292 {
5293     if (opaque) opaque = 0; /* to make compiler happy */
5294     _hfree(ptr);
5295 }
5296
5297 #endif /* MSC */
5298
5299
5300 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5301
5302 #ifndef STDC
5303 extern voidp  calloc OF((uInt items, uInt size));
5304 extern void   free   OF((voidpf ptr));
5305 #endif
5306
5307 voidpf zcalloc (opaque, items, size)
5308     voidpf opaque;
5309     unsigned items;
5310     unsigned size;
5311 {
5312     if (opaque) items += size - size; /* make compiler happy */
5313     return (voidpf)calloc(items, size);
5314 }
5315
5316 void  zcfree (opaque, ptr)
5317     voidpf opaque;
5318     voidpf ptr;
5319 {
5320     free(ptr);
5321     if (opaque) return; /* make compiler happy */
5322 }
5323
5324 #endif /* MY_ZCALLOC */
5325 /* --- zutil.c */
5326
5327 /* +++ adler32.c */
5328 /* adler32.c -- compute the Adler-32 checksum of a data stream
5329  * Copyright (C) 1995-1996 Mark Adler
5330  * For conditions of distribution and use, see copyright notice in zlib.h 
5331  */
5332
5333 /* From: adler32.c,v 1.10 1996/05/22 11:52:18 me Exp $ */
5334
5335 /* #include "zlib.h" */
5336
5337 #define BASE 65521L /* largest prime smaller than 65536 */
5338 #define NMAX 5552
5339 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5340
5341 #define DO1(buf,i)  {s1 += buf[i]; s2 += s1;}
5342 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
5343 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
5344 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
5345 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
5346
5347 /* ========================================================================= */
5348 uLong adler32(adler, buf, len)
5349     uLong adler;
5350     const Bytef *buf;
5351     uInt len;
5352 {
5353     unsigned long s1 = adler & 0xffff;
5354     unsigned long s2 = (adler >> 16) & 0xffff;
5355     int k;
5356
5357     if (buf == Z_NULL) return 1L;
5358
5359     while (len > 0) {
5360         k = len < NMAX ? len : NMAX;
5361         len -= k;
5362         while (k >= 16) {
5363             DO16(buf);
5364             buf += 16;
5365             k -= 16;
5366         }
5367         if (k != 0) do {
5368             s1 += *buf++;
5369             s2 += s1;
5370         } while (--k);
5371         s1 %= BASE;
5372         s2 %= BASE;
5373     }
5374     return (s2 << 16) | s1;
5375 }
5376 /* --- adler32.c */