]> git.ozlabs.org Git - ccan/blob - ccan/tally/tally.c
7eec70d39323429e259e08f04d195fd97472f57b
[ccan] / ccan / tally / tally.c
1 /* Licensed under LGPLv3+ - see LICENSE file for details */
2 #include <ccan/tally/tally.h>
3 #include <ccan/build_assert/build_assert.h>
4 #include <ccan/likely/likely.h>
5 #include <stdint.h>
6 #include <limits.h>
7 #include <string.h>
8 #include <stdio.h>
9 #include <assert.h>
10 #include <stdlib.h>
11
12 #define SIZET_BITS (sizeof(size_t)*CHAR_BIT)
13
14 /* We use power of 2 steps.  I tried being tricky, but it got buggy. */
15 struct tally {
16         ssize_t min, max;
17         size_t total[2];
18         /* This allows limited frequency analysis. */
19         unsigned buckets, step_bits;
20         size_t counts[1 /* Actually: [buckets] */ ];
21 };
22
23 struct tally *tally_new(unsigned buckets)
24 {
25         struct tally *tally;
26
27         /* There is always 1 bucket. */
28         if (buckets == 0) {
29                 buckets = 1;
30         }
31
32         /* Overly cautious check for overflow. */
33         if (sizeof(*tally) * buckets / sizeof(*tally) != buckets) {
34                 return NULL;
35         }
36
37         tally = (struct tally *)malloc(
38                 sizeof(*tally) + sizeof(tally->counts[0])*(buckets-1));
39         if (tally == NULL) {
40                 return NULL;
41         }
42
43         tally->max = ((size_t)1 << (SIZET_BITS - 1));
44         tally->min = ~tally->max;
45         tally->total[0] = tally->total[1] = 0;
46         tally->buckets = buckets;
47         tally->step_bits = 0;
48         memset(tally->counts, 0, sizeof(tally->counts[0])*buckets);
49         return tally;
50 }
51
52 static unsigned bucket_of(ssize_t min, unsigned step_bits, ssize_t val)
53 {
54         /* Don't over-shift. */
55         if (step_bits == SIZET_BITS) {
56                 return 0;
57         }
58         assert(step_bits < SIZET_BITS);
59         return (size_t)(val - min) >> step_bits;
60 }
61
62 /* Return the min value in bucket b. */
63 static ssize_t bucket_min(ssize_t min, unsigned step_bits, unsigned b)
64 {
65         /* Don't over-shift. */
66         if (step_bits == SIZET_BITS)
67                 return min;
68         assert(step_bits < SIZET_BITS);
69         return min + ((ssize_t)b << step_bits);
70 }
71
72 /* Does shifting by this many bits truncate the number? */
73 static bool shift_overflows(size_t num, unsigned bits)
74 {
75         if (bits == 0)
76                 return false;
77
78         return ((num << bits) >> 1) != (num << (bits - 1));
79 }
80
81 /* When min or max change, we may need to shuffle the frequency counts. */
82 static void renormalize(struct tally *tally,
83                         ssize_t new_min, ssize_t new_max)
84 {
85         size_t range, spill;
86         unsigned int i, old_min;
87
88         /* Uninitialized?  Don't do anything... */
89         if (tally->max < tally->min)
90                 goto update;
91
92         /* If we don't have sufficient range, increase step bits until
93          * buckets cover entire range of ssize_t anyway. */
94         range = (new_max - new_min) + 1;
95         while (!shift_overflows(tally->buckets, tally->step_bits)
96                && range > ((size_t)tally->buckets << tally->step_bits)) {
97                 /* Collapse down. */
98                 for (i = 1; i < tally->buckets; i++) {
99                         tally->counts[i/2] += tally->counts[i];
100                         tally->counts[i] = 0;
101                 }
102                 tally->step_bits++;
103         }
104
105         /* Now if minimum has dropped, move buckets up. */
106         old_min = bucket_of(new_min, tally->step_bits, tally->min);
107         memmove(tally->counts + old_min,
108                 tally->counts,
109                 sizeof(tally->counts[0]) * (tally->buckets - old_min));
110         memset(tally->counts, 0, sizeof(tally->counts[0]) * old_min);
111
112         /* If we moved boundaries, adjust buckets to that ratio. */
113         spill = (tally->min - new_min) % (1 << tally->step_bits);
114         for (i = 0; i < tally->buckets-1; i++) {
115                 size_t adjust = (tally->counts[i] >> tally->step_bits) * spill;
116                 tally->counts[i] -= adjust;
117                 tally->counts[i+1] += adjust;
118         }
119
120 update:
121         tally->min = new_min;
122         tally->max = new_max;
123 }
124
125 void tally_add(struct tally *tally, ssize_t val)
126 {
127         ssize_t new_min = tally->min, new_max = tally->max;
128         bool need_renormalize = false;
129
130         if (val < tally->min) {
131                 new_min = val;
132                 need_renormalize = true;
133         }
134         if (val > tally->max) {
135                 new_max = val;
136                 need_renormalize = true;
137         }
138         if (need_renormalize)
139                 renormalize(tally, new_min, new_max);
140
141         /* 128-bit arithmetic!  If we didn't want exact mean, we could just
142          * pull it out of counts. */
143         if (val > 0 && tally->total[0] + val < tally->total[0])
144                 tally->total[1]++;
145         else if (val < 0 && tally->total[0] + val > tally->total[0])
146                 tally->total[1]--;
147         tally->total[0] += val;
148         tally->counts[bucket_of(tally->min, tally->step_bits, val)]++;
149 }
150
151 size_t tally_num(const struct tally *tally)
152 {
153         size_t i, num = 0;
154         for (i = 0; i < tally->buckets; i++)
155                 num += tally->counts[i];
156         return num;
157 }
158
159 ssize_t tally_min(const struct tally *tally)
160 {
161         return tally->min;
162 }
163
164 ssize_t tally_max(const struct tally *tally)
165 {
166         return tally->max;
167 }
168
169 /* FIXME: Own ccan module please! */
170 static unsigned fls64(uint64_t val)
171 {
172 #if HAVE_BUILTIN_CLZL
173         if (val <= ULONG_MAX) {
174                 /* This is significantly faster! */
175                 return val ? sizeof(long) * CHAR_BIT - __builtin_clzl(val) : 0;
176         } else {
177 #endif
178         uint64_t r = 64;
179
180         if (!val)
181                 return 0;
182         if (!(val & 0xffffffff00000000ull)) {
183                 val <<= 32;
184                 r -= 32;
185         }
186         if (!(val & 0xffff000000000000ull)) {
187                 val <<= 16;
188                 r -= 16;
189         }
190         if (!(val & 0xff00000000000000ull)) {
191                 val <<= 8;
192                 r -= 8;
193         }
194         if (!(val & 0xf000000000000000ull)) {
195                 val <<= 4;
196                 r -= 4;
197         }
198         if (!(val & 0xc000000000000000ull)) {
199                 val <<= 2;
200                 r -= 2;
201         }
202         if (!(val & 0x8000000000000000ull)) {
203                 val <<= 1;
204                 r -= 1;
205         }
206         return r;
207 #if HAVE_BUILTIN_CLZL
208         }
209 #endif
210 }
211
212 /* This is stolen straight from Hacker's Delight. */
213 static uint64_t divlu64(uint64_t u1, uint64_t u0, uint64_t v)
214 {
215         const uint64_t b = 4294967296ULL; // Number base (32 bits).
216         uint32_t un[4],           // Dividend and divisor
217                 vn[2];            // normalized and broken
218                                   // up into halfwords.
219         uint32_t q[2];            // Quotient as halfwords.
220         uint64_t un1, un0,        // Dividend and divisor
221                 vn0;              // as fullwords.
222         uint64_t qhat;            // Estimated quotient digit.
223         uint64_t rhat;            // A remainder.
224         uint64_t p;               // Product of two digits.
225         int64_t s, i, j, t, k;
226
227         if (u1 >= v)              // If overflow, return the largest
228                 return (uint64_t)-1; // possible quotient.
229
230         s = 64 - fls64(v);                // 0 <= s <= 63.
231         vn0 = v << s;             // Normalize divisor.
232         vn[1] = vn0 >> 32;        // Break divisor up into
233         vn[0] = vn0 & 0xFFFFFFFF; // two 32-bit halves.
234
235         // Shift dividend left.
236         un1 = ((u1 << s) | (u0 >> (64 - s))) & (-s >> 63);
237         un0 = u0 << s;
238         un[3] = un1 >> 32;        // Break dividend up into
239         un[2] = un1;              // four 32-bit halfwords
240         un[1] = un0 >> 32;        // Note: storing into
241         un[0] = un0;              // halfwords truncates.
242
243         for (j = 1; j >= 0; j--) {
244                 // Compute estimate qhat of q[j].
245                 qhat = (un[j+2]*b + un[j+1])/vn[1];
246                 rhat = (un[j+2]*b + un[j+1]) - qhat*vn[1];
247         again:
248                 if (qhat >= b || qhat*vn[0] > b*rhat + un[j]) {
249                         qhat = qhat - 1;
250                         rhat = rhat + vn[1];
251                         if (rhat < b) goto again;
252                 }
253
254                 // Multiply and subtract.
255                 k = 0;
256                 for (i = 0; i < 2; i++) {
257                         p = qhat*vn[i];
258                         t = un[i+j] - k - (p & 0xFFFFFFFF);
259                         un[i+j] = t;
260                         k = (p >> 32) - (t >> 32);
261                 }
262                 t = un[j+2] - k;
263                 un[j+2] = t;
264
265                 q[j] = qhat;              // Store quotient digit.
266                 if (t < 0) {              // If we subtracted too
267                         q[j] = q[j] - 1;  // much, add back.
268                         k = 0;
269                         for (i = 0; i < 2; i++) {
270                                 t = un[i+j] + vn[i] + k;
271                                 un[i+j] = t;
272                                 k = t >> 32;
273                         }
274                         un[j+2] = un[j+2] + k;
275                 }
276         } // End j.
277
278         return q[1]*b + q[0];
279 }
280
281 static int64_t divls64(int64_t u1, uint64_t u0, int64_t v)
282 {
283         int64_t q, uneg, vneg, diff, borrow;
284
285         uneg = u1 >> 63;          // -1 if u < 0.
286         if (uneg) {               // Compute the absolute
287                 u0 = -u0;         // value of the dividend u.
288                 borrow = (u0 != 0);
289                 u1 = -u1 - borrow;
290         }
291
292         vneg = v >> 63;           // -1 if v < 0.
293         v = (v ^ vneg) - vneg;    // Absolute value of v.
294
295         if ((uint64_t)u1 >= (uint64_t)v)
296                 goto overflow;
297
298         q = divlu64(u1, u0, v);
299
300         diff = uneg ^ vneg;       // Negate q if signs of
301         q = (q ^ diff) - diff;    // u and v differed.
302
303         if ((diff ^ q) < 0 && q != 0) {    // If overflow, return the largest
304         overflow:                          // possible neg. quotient.
305                 q = 0x8000000000000000ULL;
306         }
307         return q;
308 }
309
310 ssize_t tally_mean(const struct tally *tally)
311 {
312         size_t count = tally_num(tally);
313         if (!count)
314                 return 0;
315
316         if (sizeof(tally->total[0]) == sizeof(uint32_t)) {
317                 /* Use standard 64-bit arithmetic. */
318                 int64_t total = tally->total[0]
319                         | (((uint64_t)tally->total[1]) << 32);
320                 return total / count;
321         }
322         return divls64(tally->total[1], tally->total[0], count);
323 }
324
325 ssize_t tally_total(const struct tally *tally, ssize_t *overflow)
326 {
327         if (overflow) {
328                 *overflow = tally->total[1];
329                 return tally->total[0];
330         }
331
332         /* If result is negative, make sure we can represent it. */
333         if (tally->total[1] & ((size_t)1 << (SIZET_BITS-1))) {
334                 /* Must have only underflowed once, and must be able to
335                  * represent result at ssize_t. */
336                 if ((~tally->total[1])+1 != 0
337                     || (ssize_t)tally->total[0] >= 0) {
338                         /* Underflow, return minimum. */
339                         return (ssize_t)((size_t)1 << (SIZET_BITS - 1));
340                 }
341         } else {
342                 /* Result is positive, must not have overflowed, and must be
343                  * able to represent as ssize_t. */
344                 if (tally->total[1] || (ssize_t)tally->total[0] < 0) {
345                         /* Overflow.  Return maximum. */
346                         return (ssize_t)~((size_t)1 << (SIZET_BITS - 1));
347                 }
348         }
349         return tally->total[0];
350 }
351
352 static ssize_t bucket_range(const struct tally *tally, unsigned b, size_t *err)
353 {
354         ssize_t min, max;
355
356         min = bucket_min(tally->min, tally->step_bits, b);
357         if (b == tally->buckets - 1)
358                 max = tally->max;
359         else
360                 max = bucket_min(tally->min, tally->step_bits, b+1) - 1;
361
362         /* FIXME: Think harder about cumulative error; is this enough?. */
363         *err = (max - min + 1) / 2;
364         /* Avoid overflow. */
365         return min + (max - min) / 2;
366 }
367
368 ssize_t tally_approx_median(const struct tally *tally, size_t *err)
369 {
370         size_t count = tally_num(tally), total = 0;
371         unsigned int i;
372
373         for (i = 0; i < tally->buckets; i++) {
374                 total += tally->counts[i];
375                 if (total * 2 >= count)
376                         break;
377         }
378         return bucket_range(tally, i, err);
379 }
380
381 ssize_t tally_approx_mode(const struct tally *tally, size_t *err)
382 {
383         unsigned int i, min_best = 0, max_best = 0;
384
385         for (i = 0; i < tally->buckets; i++) {
386                 if (tally->counts[i] > tally->counts[min_best]) {
387                         min_best = max_best = i;
388                 } else if (tally->counts[i] == tally->counts[min_best]) {
389                         max_best = i;
390                 }
391         }
392
393         /* We can have more than one best, making our error huge. */
394         if (min_best != max_best) {
395                 ssize_t min, max;
396                 min = bucket_range(tally, min_best, err);
397                 max = bucket_range(tally, max_best, err);
398                 max += *err;
399                 *err += (size_t)(max - min);
400                 return min + (max - min) / 2;
401         }
402
403         return bucket_range(tally, min_best, err);
404 }
405
406 static unsigned get_max_bucket(const struct tally *tally)
407 {
408         unsigned int i;
409
410         for (i = tally->buckets; i > 0; i--)
411                 if (tally->counts[i-1])
412                         break;
413         return i;
414 }
415
416 char *tally_histogram(const struct tally *tally,
417                       unsigned width, unsigned height)
418 {
419         unsigned int i, count, max_bucket, largest_bucket;
420         struct tally *tmp;
421         char *graph, *p;
422
423         assert(width >= TALLY_MIN_HISTO_WIDTH);
424         assert(height >= TALLY_MIN_HISTO_HEIGHT);
425
426         /* Ignore unused buckets. */
427         max_bucket = get_max_bucket(tally);
428
429         /* FIXME: It'd be nice to smooth here... */
430         if (height >= max_bucket) {
431                 height = max_bucket;
432                 tmp = NULL;
433         } else {
434                 /* We create a temporary then renormalize so < height. */
435                 /* FIXME: Antialias properly! */
436                 tmp = tally_new(tally->buckets);
437                 if (!tmp)
438                         return NULL;
439                 tmp->min = tally->min;
440                 tmp->max = tally->max;
441                 tmp->step_bits = tally->step_bits;
442                 memcpy(tmp->counts, tally->counts,
443                        sizeof(tally->counts[0]) * tmp->buckets);
444                 while ((max_bucket = get_max_bucket(tmp)) >= height)
445                         renormalize(tmp, tmp->min, tmp->max * 2);
446                 /* Restore max */
447                 tmp->max = tally->max;
448                 tally = tmp;
449                 height = max_bucket;
450         }
451
452         /* Figure out longest line, for scale. */
453         largest_bucket = 0;
454         for (i = 0; i < tally->buckets; i++) {
455                 if (tally->counts[i] > largest_bucket)
456                         largest_bucket = tally->counts[i];
457         }
458
459         p = graph = (char *)malloc(height * (width + 1) + 1);
460         if (!graph) {
461                 free(tmp);
462                 return NULL;
463         }
464
465         for (i = 0; i < height; i++) {
466                 unsigned covered = 1, row;
467
468                 /* People expect minimum at the bottom. */
469                 row = height - i - 1;
470                 count = (double)tally->counts[row] / largest_bucket * (width-1)+1;
471
472                 if (row == 0)
473                         covered = snprintf(p, width, "%zi", tally->min);
474                 else if (row == height - 1)
475                         covered = snprintf(p, width, "%zi", tally->max);
476                 else if (row == bucket_of(tally->min, tally->step_bits, 0))
477                         *p = '+';
478                 else
479                         *p = '|';
480
481                 if (covered > width)
482                         covered = width;
483                 p += covered;
484
485                 if (count > covered)
486                         count -= covered;
487                 else
488                         count = 0;
489
490                 memset(p, '*', count);
491                 p += count;
492                 *p = '\n';
493                 p++;
494         }
495         *p = '\0';
496         free(tmp);
497         return graph;
498 }