]> git.ozlabs.org Git - ccan/blob - ccan/tally/tally.c
Merge branch 'io'
[ccan] / ccan / tally / tally.c
1 /* Licensed under LGPLv3+ - see LICENSE file for details */
2 #include <ccan/tally/tally.h>
3 #include <ccan/build_assert/build_assert.h>
4 #include <ccan/likely/likely.h>
5 #include <stdint.h>
6 #include <limits.h>
7 #include <string.h>
8 #include <stdio.h>
9 #include <assert.h>
10 #include <stdlib.h>
11
12 #define SIZET_BITS (sizeof(size_t)*CHAR_BIT)
13
14 /* We use power of 2 steps.  I tried being tricky, but it got buggy. */
15 struct tally {
16         ssize_t min, max;
17         size_t total[2];
18         /* This allows limited frequency analysis. */
19         unsigned buckets, step_bits;
20         size_t counts[1 /* Actually: [buckets] */ ];
21 };
22
23 struct tally *tally_new(unsigned buckets)
24 {
25         struct tally *tally;
26
27         /* There is always 1 bucket. */
28         if (buckets == 0) {
29                 buckets = 1;
30         }
31
32         /* Overly cautious check for overflow. */
33         if (sizeof(*tally) * buckets / sizeof(*tally) != buckets) {
34                 return NULL;
35         }
36
37         tally = (struct tally *)malloc(
38                 sizeof(*tally) + sizeof(tally->counts[0])*(buckets-1));
39         if (tally == NULL) {
40                 return NULL;
41         }
42
43         tally->max = ((size_t)1 << (SIZET_BITS - 1));
44         tally->min = ~tally->max;
45         tally->total[0] = tally->total[1] = 0;
46         tally->buckets = buckets;
47         tally->step_bits = 0;
48         memset(tally->counts, 0, sizeof(tally->counts[0])*buckets);
49         return tally;
50 }
51
52 static unsigned bucket_of(ssize_t min, unsigned step_bits, ssize_t val)
53 {
54         /* Don't over-shift. */
55         if (step_bits == SIZET_BITS) {
56                 return 0;
57         }
58         assert(step_bits < SIZET_BITS);
59         return (size_t)(val - min) >> step_bits;
60 }
61
62 /* Return the min value in bucket b. */
63 static ssize_t bucket_min(ssize_t min, unsigned step_bits, unsigned b)
64 {
65         /* Don't over-shift. */
66         if (step_bits == SIZET_BITS) {
67                 return min;
68         }
69         assert(step_bits < SIZET_BITS);
70         return min + ((ssize_t)b << step_bits);
71 }
72
73 /* Does shifting by this many bits truncate the number? */
74 static bool shift_overflows(size_t num, unsigned bits)
75 {
76         if (bits == 0) {
77                 return false;
78         }
79
80         return ((num << bits) >> 1) != (num << (bits - 1));
81 }
82
83 /* When min or max change, we may need to shuffle the frequency counts. */
84 static void renormalize(struct tally *tally,
85                         ssize_t new_min, ssize_t new_max)
86 {
87         size_t range, spill;
88         unsigned int i, old_min;
89
90         /* Uninitialized?  Don't do anything... */
91         if (tally->max < tally->min) {
92                 goto update;
93         }
94
95         /* If we don't have sufficient range, increase step bits until
96          * buckets cover entire range of ssize_t anyway. */
97         range = (new_max - new_min) + 1;
98         while (!shift_overflows(tally->buckets, tally->step_bits)
99                && range > ((size_t)tally->buckets << tally->step_bits)) {
100                 /* Collapse down. */
101                 for (i = 1; i < tally->buckets; i++) {
102                         tally->counts[i/2] += tally->counts[i];
103                         tally->counts[i] = 0;
104                 }
105                 tally->step_bits++;
106         }
107
108         /* Now if minimum has dropped, move buckets up. */
109         old_min = bucket_of(new_min, tally->step_bits, tally->min);
110         memmove(tally->counts + old_min,
111                 tally->counts,
112                 sizeof(tally->counts[0]) * (tally->buckets - old_min));
113         memset(tally->counts, 0, sizeof(tally->counts[0]) * old_min);
114
115         /* If we moved boundaries, adjust buckets to that ratio. */
116         spill = (tally->min - new_min) % (1 << tally->step_bits);
117         for (i = 0; i < tally->buckets-1; i++) {
118                 size_t adjust = (tally->counts[i] >> tally->step_bits) * spill;
119                 tally->counts[i] -= adjust;
120                 tally->counts[i+1] += adjust;
121         }
122
123 update:
124         tally->min = new_min;
125         tally->max = new_max;
126 }
127
128 void tally_add(struct tally *tally, ssize_t val)
129 {
130         ssize_t new_min = tally->min, new_max = tally->max;
131         bool need_renormalize = false;
132
133         if (val < tally->min) {
134                 new_min = val;
135                 need_renormalize = true;
136         }
137         if (val > tally->max) {
138                 new_max = val;
139                 need_renormalize = true;
140         }
141         if (need_renormalize) {
142                 renormalize(tally, new_min, new_max);
143         }
144
145         /* 128-bit arithmetic!  If we didn't want exact mean, we could just
146          * pull it out of counts. */
147         if (val > 0 && tally->total[0] + val < tally->total[0]) {
148                 tally->total[1]++;
149         } else if (val < 0 && tally->total[0] + val > tally->total[0]) {
150                 tally->total[1]--;
151         }
152         tally->total[0] += val;
153         tally->counts[bucket_of(tally->min, tally->step_bits, val)]++;
154 }
155
156 size_t tally_num(const struct tally *tally)
157 {
158         size_t i, num = 0;
159         for (i = 0; i < tally->buckets; i++) {
160                 num += tally->counts[i];
161         }
162         return num;
163 }
164
165 ssize_t tally_min(const struct tally *tally)
166 {
167         return tally->min;
168 }
169
170 ssize_t tally_max(const struct tally *tally)
171 {
172         return tally->max;
173 }
174
175 /* FIXME: Own ccan module please! */
176 static unsigned fls64(uint64_t val)
177 {
178 #if HAVE_BUILTIN_CLZL
179         if (val <= ULONG_MAX) {
180                 /* This is significantly faster! */
181                 return val ? sizeof(long) * CHAR_BIT - __builtin_clzl(val) : 0;
182         } else {
183 #endif
184         uint64_t r = 64;
185
186         if (!val) {
187                 return 0;
188         }
189         if (!(val & 0xffffffff00000000ull)) {
190                 val <<= 32;
191                 r -= 32;
192         }
193         if (!(val & 0xffff000000000000ull)) {
194                 val <<= 16;
195                 r -= 16;
196         }
197         if (!(val & 0xff00000000000000ull)) {
198                 val <<= 8;
199                 r -= 8;
200         }
201         if (!(val & 0xf000000000000000ull)) {
202                 val <<= 4;
203                 r -= 4;
204         }
205         if (!(val & 0xc000000000000000ull)) {
206                 val <<= 2;
207                 r -= 2;
208         }
209         if (!(val & 0x8000000000000000ull)) {
210                 val <<= 1;
211                 r -= 1;
212         }
213         return r;
214 #if HAVE_BUILTIN_CLZL
215         }
216 #endif
217 }
218
219 /* This is stolen straight from Hacker's Delight. */
220 static uint64_t divlu64(uint64_t u1, uint64_t u0, uint64_t v)
221 {
222         const uint64_t b = 4294967296ULL; /* Number base (32 bits). */
223         uint32_t un[4],           /* Dividend and divisor */
224                 vn[2];            /* normalized and broken */
225                                   /* up into halfwords. */
226         uint32_t q[2];            /* Quotient as halfwords. */
227         uint64_t un1, un0,        /* Dividend and divisor */
228                 vn0;              /* as fullwords. */
229         uint64_t qhat;            /* Estimated quotient digit. */
230         uint64_t rhat;            /* A remainder. */
231         uint64_t p;               /* Product of two digits. */
232         int64_t s, i, j, t, k;
233
234         if (u1 >= v) {            /* If overflow, return the largest */
235                 return (uint64_t)-1; /* possible quotient. */
236         }
237
238         s = 64 - fls64(v);                /* 0 <= s <= 63. */
239         vn0 = v << s;             /* Normalize divisor. */
240         vn[1] = vn0 >> 32;        /* Break divisor up into */
241         vn[0] = vn0 & 0xFFFFFFFF; /* two 32-bit halves. */
242
243         // Shift dividend left.
244         un1 = ((u1 << s) | (u0 >> (64 - s))) & (-s >> 63);
245         un0 = u0 << s;
246         un[3] = un1 >> 32;        /* Break dividend up into */
247         un[2] = un1;              /* four 32-bit halfwords */
248         un[1] = un0 >> 32;        /* Note: storing into */
249         un[0] = un0;              /* halfwords truncates. */
250
251         for (j = 1; j >= 0; j--) {
252                 /* Compute estimate qhat of q[j]. */
253                 qhat = (un[j+2]*b + un[j+1])/vn[1];
254                 rhat = (un[j+2]*b + un[j+1]) - qhat*vn[1];
255         again:
256                 if (qhat >= b || qhat*vn[0] > b*rhat + un[j]) {
257                         qhat = qhat - 1;
258                         rhat = rhat + vn[1];
259                         if (rhat < b) {
260                                 goto again;
261                         }
262                 }
263
264                 /* Multiply and subtract. */
265                 k = 0;
266                 for (i = 0; i < 2; i++) {
267                         p = qhat*vn[i];
268                         t = un[i+j] - k - (p & 0xFFFFFFFF);
269                         un[i+j] = t;
270                         k = (p >> 32) - (t >> 32);
271                 }
272                 t = un[j+2] - k;
273                 un[j+2] = t;
274
275                 q[j] = qhat;              /* Store quotient digit. */
276                 if (t < 0) {              /* If we subtracted too */
277                         q[j] = q[j] - 1;  /* much, add back. */
278                         k = 0;
279                         for (i = 0; i < 2; i++) {
280                                 t = un[i+j] + vn[i] + k;
281                                 un[i+j] = t;
282                                 k = t >> 32;
283                         }
284                         un[j+2] = un[j+2] + k;
285                 }
286         } /* End j. */
287
288         return q[1]*b + q[0];
289 }
290
291 static int64_t divls64(int64_t u1, uint64_t u0, int64_t v)
292 {
293         int64_t q, uneg, vneg, diff, borrow;
294
295         uneg = u1 >> 63;          /* -1 if u < 0. */
296         if (uneg) {               /* Compute the absolute */
297                 u0 = -u0;         /* value of the dividend u. */
298                 borrow = (u0 != 0);
299                 u1 = -u1 - borrow;
300         }
301
302         vneg = v >> 63;           /* -1 if v < 0. */
303         v = (v ^ vneg) - vneg;    /* Absolute value of v. */
304
305         if ((uint64_t)u1 >= (uint64_t)v) {
306                 goto overflow;
307         }
308
309         q = divlu64(u1, u0, v);
310
311         diff = uneg ^ vneg;       /* Negate q if signs of */
312         q = (q ^ diff) - diff;    /* u and v differed. */
313
314         if ((diff ^ q) < 0 && q != 0) {    /* If overflow, return the
315                                               largest */
316         overflow:                          /* possible neg. quotient. */
317                 q = 0x8000000000000000ULL;
318         }
319         return q;
320 }
321
322 ssize_t tally_mean(const struct tally *tally)
323 {
324         size_t count = tally_num(tally);
325         if (!count) {
326                 return 0;
327         }
328
329         if (sizeof(tally->total[0]) == sizeof(uint32_t)) {
330                 /* Use standard 64-bit arithmetic. */
331                 int64_t total = tally->total[0]
332                         | (((uint64_t)tally->total[1]) << 32);
333                 return total / count;
334         }
335         return divls64(tally->total[1], tally->total[0], count);
336 }
337
338 ssize_t tally_total(const struct tally *tally, ssize_t *overflow)
339 {
340         if (overflow) {
341                 *overflow = tally->total[1];
342                 return tally->total[0];
343         }
344
345         /* If result is negative, make sure we can represent it. */
346         if (tally->total[1] & ((size_t)1 << (SIZET_BITS-1))) {
347                 /* Must have only underflowed once, and must be able to
348                  * represent result at ssize_t. */
349                 if ((~tally->total[1])+1 != 0
350                     || (ssize_t)tally->total[0] >= 0) {
351                         /* Underflow, return minimum. */
352                         return (ssize_t)((size_t)1 << (SIZET_BITS - 1));
353                 }
354         } else {
355                 /* Result is positive, must not have overflowed, and must be
356                  * able to represent as ssize_t. */
357                 if (tally->total[1] || (ssize_t)tally->total[0] < 0) {
358                         /* Overflow.  Return maximum. */
359                         return (ssize_t)~((size_t)1 << (SIZET_BITS - 1));
360                 }
361         }
362         return tally->total[0];
363 }
364
365 static ssize_t bucket_range(const struct tally *tally, unsigned b, size_t *err)
366 {
367         ssize_t min, max;
368
369         min = bucket_min(tally->min, tally->step_bits, b);
370         if (b == tally->buckets - 1) {
371                 max = tally->max;
372         } else {
373                 max = bucket_min(tally->min, tally->step_bits, b+1) - 1;
374         }
375
376         /* FIXME: Think harder about cumulative error; is this enough?. */
377         *err = (max - min + 1) / 2;
378         /* Avoid overflow. */
379         return min + (max - min) / 2;
380 }
381
382 ssize_t tally_approx_median(const struct tally *tally, size_t *err)
383 {
384         size_t count = tally_num(tally), total = 0;
385         unsigned int i;
386
387         for (i = 0; i < tally->buckets; i++) {
388                 total += tally->counts[i];
389                 if (total * 2 >= count) {
390                         break;
391                 }
392         }
393         return bucket_range(tally, i, err);
394 }
395
396 ssize_t tally_approx_mode(const struct tally *tally, size_t *err)
397 {
398         unsigned int i, min_best = 0, max_best = 0;
399
400         for (i = 0; i < tally->buckets; i++) {
401                 if (tally->counts[i] > tally->counts[min_best]) {
402                         min_best = max_best = i;
403                 } else if (tally->counts[i] == tally->counts[min_best]) {
404                         max_best = i;
405                 }
406         }
407
408         /* We can have more than one best, making our error huge. */
409         if (min_best != max_best) {
410                 ssize_t min, max;
411                 min = bucket_range(tally, min_best, err);
412                 max = bucket_range(tally, max_best, err);
413                 max += *err;
414                 *err += (size_t)(max - min);
415                 return min + (max - min) / 2;
416         }
417
418         return bucket_range(tally, min_best, err);
419 }
420
421 static unsigned get_max_bucket(const struct tally *tally)
422 {
423         unsigned int i;
424
425         for (i = tally->buckets; i > 0; i--) {
426                 if (tally->counts[i-1]) {
427                         break;
428                 }
429         }
430         return i;
431 }
432
433 char *tally_histogram(const struct tally *tally,
434                       unsigned width, unsigned height)
435 {
436         unsigned int i, count, max_bucket, largest_bucket;
437         struct tally *tmp;
438         char *graph, *p;
439
440         assert(width >= TALLY_MIN_HISTO_WIDTH);
441         assert(height >= TALLY_MIN_HISTO_HEIGHT);
442
443         /* Ignore unused buckets. */
444         max_bucket = get_max_bucket(tally);
445
446         /* FIXME: It'd be nice to smooth here... */
447         if (height >= max_bucket) {
448                 height = max_bucket;
449                 tmp = NULL;
450         } else {
451                 /* We create a temporary then renormalize so < height. */
452                 /* FIXME: Antialias properly! */
453                 tmp = tally_new(tally->buckets);
454                 if (!tmp) {
455                         return NULL;
456                 }
457                 tmp->min = tally->min;
458                 tmp->max = tally->max;
459                 tmp->step_bits = tally->step_bits;
460                 memcpy(tmp->counts, tally->counts,
461                        sizeof(tally->counts[0]) * tmp->buckets);
462                 while ((max_bucket = get_max_bucket(tmp)) >= height) {
463                         renormalize(tmp, tmp->min, tmp->max * 2);
464                 }
465                 /* Restore max */
466                 tmp->max = tally->max;
467                 tally = tmp;
468                 height = max_bucket;
469         }
470
471         /* Figure out longest line, for scale. */
472         largest_bucket = 0;
473         for (i = 0; i < tally->buckets; i++) {
474                 if (tally->counts[i] > largest_bucket) {
475                         largest_bucket = tally->counts[i];
476                 }
477         }
478
479         p = graph = (char *)malloc(height * (width + 1) + 1);
480         if (!graph) {
481                 free(tmp);
482                 return NULL;
483         }
484
485         for (i = 0; i < height; i++) {
486                 unsigned covered = 1, row;
487
488                 /* People expect minimum at the bottom. */
489                 row = height - i - 1;
490                 count = (double)tally->counts[row] / largest_bucket * (width-1)+1;
491
492                 if (row == 0) {
493                         covered = snprintf(p, width, "%zi", tally->min);
494                 } else if (row == height - 1) {
495                         covered = snprintf(p, width, "%zi", tally->max);
496                 } else if (row == bucket_of(tally->min, tally->step_bits, 0)) {
497                         *p = '+';
498                 } else {
499                         *p = '|';
500                 }
501
502                 if (covered > width) {
503                         covered = width;
504                 }
505                 p += covered;
506
507                 if (count > covered) {
508                         count -= covered;
509                         memset(p, '*', count);
510                 } else {
511                         count = 0;
512                 }
513
514                 p += count;
515                 *p = '\n';
516                 p++;
517         }
518         *p = '\0';
519         free(tmp);
520         return graph;
521 }